The document describes the solution to an exercise we tried on 27" May’15. It is very similar to the
Key assignment at https://courses.cs.ttu.ee/w/images/1/12/ITI0130 Lab12 Key assignment.zip. As
discussed in the session, this is one possible solution among others.

| would recommend this especially to those who were not present in the session on 27" May and
also to those who defended on 20™ May, because of some doubts that we encountered with the
“assignable” clause. Based on some tests that | tried by declaring the assignable clause at the
beginning and end of the specs, | found some impact on the behaviour of the Key tool. | have
described one scenario towards the end of the document. In this solution, we declared the
assignable clause at the end of the spec as it is done in some standard examples provided with the
tool.

Regardless of any differences in the solution, those who have already defended may not submit any
further updates of the assignment.

The exercise is a simple class modelling two basic operation of a Bank — “addAccount” and
“suspendAccount”. The method “find” is identical to the one in the KeY assignment.

We start with the “find” function. In the assignment file we need to comment the JML specification
of the other functions as shown to allow the Key tool to load the file.

/*¥@ //normal_behaviour

DEE®E®®®

//assignable account[*];

@*/

The first set of JML specifications for the “find” function is below. It is based on the pre-conditions
and post-conditions provided in the comment.

/*
* The function finds a number (key) in an int array.
* It returns the length of the array if key is not found
* else returns the index of key.
*
* Pre-Condition -
* Array must not be null.
* Array must not be empty.
*
* Post-Condition -
* Return value must not be greater than array size
* Return array size if the key is not found
* Return array index of the key if it is found.
*/

/*@ normal_behaviour
requires a != null;
requires a.length > 9;
ensures \result <= a.length;
ensures \result == a.length ==>
(\forall int k; © <= k & & k < a.length; a[k] != \old(key));
ensures \result < a.length ==> a[\result] == \old(key);
assignable \nothing;

DEEE®E®®®

https://courses.cs.ttu.ee/w/images/1/12/ITI0130_Lab12_Key_assignment.zip

protected int find(int[] a, int key) {
int i = 9;

/*@ loop_invariant

@ (0 <= 1 & 1 <= a.length) &&

@ (\forall int k; © <= k & & k < i; a[k] != key);
@ assignable i;

@ decreases a.length - i;

@*/
while(i < a.length && a[i] != key)
i++;

return i;

The pre-conditions are self-explanatory but post-conditions can be formulated in other ways as well.

Load the file with the “find” specs in Key tool and please ensure the “Proof Search Strategy” is set to
default. The default button should be greyed out as shown in the screenshot:

S-S
File Yiew Proof Options About

No solver available |§| @ 5

Proofs : Current Goal
Enw with model Desktopgn1 6:09:14
ﬁ Bank[Bank:find{{lLint] JML normal_behavior operation | ==-.
wellPorwed (heap)
& 'self = null
[« i |] & self.<created> = TRUE
- & Bank::exactInstance (self) = TRUE
[Proot | Goals | Proof Search Strategy | Info | & [fa= null | a.<createds = TRUE) & inInt (key))
& measuredByEmpty
& ['a=null & (a.length > 0 & [self.<inv> & !a = null)}})
Max. Rule Applications: 10000 - (hfaiAtPrE::hEap Il _a:=a || _key:=key}
<

exc=null;try {result=self.find(a, key)BBank;
Jeakeh (java.lang.Throwshle e |

1 10 100 000 10k A0k LU
Java DL Options
Stop at

® Default Unclosable

exc=e;

]

[v]

¥4 [result <= a.length
Proof splitting & [0 <= result
) Free @ Delayed) Off L & [iresult = a.length -» Yforall int k; (0 <= k & k < a.length & inInt(k) -3 'a[k] = keyi}
Loop treatment s (lresult < a.length -> alresult] = key) & self.<inv>)))
® Invariant) Expand © None & exe = null
P L & \forall Field £;
) @ A Vforall java.lang.cbject o; (lo = null & lo.<created>@heapAtPre = TRUE | o.f = o.f@heapitPre))
Method treatment
® Contract) Expand) Mone
Dependency contracts
® on O off
Query treatment L
< on C Restricted ® Off Ad

g3 Hint: You can search for node numbers or rule names in the proof tree view (press CTRL+SHIFT+F).

Please run (“start”) the proof-search. The tool will prove the goal and display statistics window.

The specification used for “addAccount” function is as shown below. We have a nested quantifier for
post-condition. We can formulate the logic in other ways as well. The one shown here ensures that
only one available cell of the array is changed and the others remain same as the old value.

The function accepts the ID of the account as argument and stores it in
the account array.

Pre-Condition -
Account ID must not be zero.
Account space must not be full.

* X X X ¥ ¥ ¥

Account must not already exist.

Post-Condition -
Account data is stored in an empty cell.
Data of other accounts must not changed

* X X X X ¥

/*@ normal_behaviour

requires (acc != 09);

requires (\exists int k; @ <= k && k < account.length;
account[k] == 0);

requires (\forall int k; @ <= k && k < account.length;
account[k] != acc);

ensures (\exists int k; @ <= k & k < account.length;
\old(account[k]) == @ && account[k] == \old(acc) &&
(\forall int m; © <= m & m < account.length & m != k;
\old(account[m]) == account[m]));

assignable account[*];

ISISISISISISISIOIOIO!

@*/

public void addAccount(int acc) {
account[find(account,@)] = acc;

}

When we try to prove the “addAccount” function with the specs above, the tool shows open goals.
One of them is “Index Out of Bounds” as shown below. We identify this case in both “addAccount”
and “suspendAccount”.

ol
File View Proof Options About
B oo e | [@]0] 5] 4| [{[mIE]=[2) [m]

Proofs Current Goal [a]
with model sre@1 7:13:23 self.suspended. <createds = TRUE,
§F Bank[Bank gl LML normal_behavior operation contract result = m 0,

with model sre@17:22:16

w3 =mwo,
ﬁ Bank[Bank add#Account(nt] JML normal_hehavior operation contr w0 = -1,
[«T I [s | m5=xw0,
P “forall int k;
Proof | Goals | Proof Search Strategy | Info \exists int m;
12384} B [0 k<= -1
8 d;”;;g: ’”fI“ET';UE | % 3= self.account. length F
applyEgReverse | =
1253 hiteAusiliayEs | lself.sccount[k] = O
1254 eplace_known_left | !(self.account@heap) (k]@heapAfter_find[self.account(m_0] := acc_0] = ace 0
1255:0ne Step Simplification | 'm= k)
1256:1eplace_known_lef s ke -1
1257:0ne Step Simplification _
1258 e._ e | k »= self.account. length
1259 teplace_known_left | !self.account[k] = O
1260:0ne Step Simplification | !(self.accountBheap) (k]@heapAfter_find[self.account(m_0] := acc_0] = acc 0
1261:true_left | !||=self.account@heap) [m]@heapafter find[self.account[m 0] := ace 0] = self.account[u]) i |
1262replace_known_left Pl ke -1 - - -
1263:0ne Step Simplification
1264 true_left | % 5= self.account.length
R 1265:0PEN GOAL | lself.sccount[k] = O
[(Im_5=m_0FALSE | !(self.account@heap) [k]@heapAfter_find[self.aceount(m_0] := acc_0] = acc 0O
® [Jm_3=m_0FALSE | mo>= 0
3 result= m_0 FALSE £ ko= -1
selfaccount <created= = TRUE FALSE | k »= self.sccount.length
HCSS:Z] — | self.account[k] = O
B ull Reference (x_arr_1=nu
Ca_ , = =
= Indlex Out of Bounds a1 k= null, butx Out of Bounds) | !(self.sccount@heap) [k]@heapAfter find[self.ascount(m 0] := acc_0] = acc 0
[Exceptional Post (find) = | m <= -1 + self.account. length) |,
Pre (ind) =l | wellFormed (heap),
4 i [v ||| self.<created> = TruE, =

KGR strategy: Applied 1346 rules (4.1 sec), closed 10 goals, 7 remaining

In the source code of the method, only one array “account” is being accessed and the index is
provided by “find” method. In order to ensure the lower bound of the return value in the contracts,
we add another post-condition to the “find” method as shown:

/*@ normal_behaviour

requires a != null;

requires a.length > 0;
ensures \result >= 0;
ensures \result <= a.length;

DE®®

@ ensures \result == a.length ==>

@ (\forall int k; © <= k & & k < a.length; a[k] != \old(key));
@ ensures \result < a.length ==> a[\result] == \old(key);

@ assignable \nothing;

@*/

Please reload both “find” and “addAccount” method and start the proof-search for each
respectively. The tool completes the proof-search and displays statistics.

The specs for “suspendAccount” are as shown below. The quantifier logic is similar to that of
“addAccount”.

/*

* The function accepts account ID as arguments

* and marks the account as suspended.

*

* Pre-Condition -

* account ID must not be zero.

* account must exist.

* account must not be suspended already.

*

*

* Post-Condition -

* The suspended status of account is marked as true
* The suspended status of other accounts must not change.
*

*/

/*@ normal_behaviour

@ requires (acc != 0);

@ requires (\exists int k; @ <= k & k < account.length;

@ account[k] == acc && !suspended[k]);

@ ensures (\exists int k; @ <= k & & k < account.length;

@ account[k] == \old(acc) && suspended[k] &&

@ (\forall int m; © <= m & & m < suspended.length & m != k;
@ \old(suspended[m]) == suspended[m]));

@ assignable suspended[*];

@*/

public void suspendAccount(int acc) {
suspended[find(account,acc)] = true;

}

The proof-search of “suspendAccount” fails with the above specifications. We identify the “Index
Out of Bounds” case as in “addAccount”. In the source code of the method “suspendAccount”, two
arrays are used. The index of array “suspended”, accessed in the method, depends on the size of the
array “account”.

We add the pre-condition that sizes of these two arrays are equal, thus ensuring, given the other
conditions, that the array index is valid. The new specs are as follows.

/*@ normal_behaviour

requires (acc != 0);

requires (account.length == suspended.length);

requires (\exists int k; @ <= k & k < account.length;
account[k] == acc && !suspended[k]);

ensures (\exists int k; @ <= k & k < account.length;

ISISISIOIE)

@ account[k] == \old(acc) && suspended[k] &&

@ (\forall int m; © <= m & & m < suspended.length & m != k;
@ \old(suspended[m]) == suspended[m]));

@ assignable suspended[*];

@*/

Please reload the “suspendAccount” method and start the proof-search. The tool completes the
proof-search with statistics.

As mentioned at the beginning of the document, | have tried a scenario which shows an impact of
the position of assignable clause on the behaviour of Key tool. In the tests the Key tool splits the
contracts when the assignable clause is declared at the beginning.

For example in the “addAccount” function, if we declare the assignable clause at the beginning as
shown below-

/*@ normal_behaviour

assignable account[*];

requires (acc != 9);

requires (\exists int k; @ <= k && k < account.length;
account[k] == 0);

requires (\forall int k; @ <= k && k < account.length;
account[k] != acc);

ensures (\exists int k; @ <= k & k < account.length;
\old(account[k]) == @ && account[k] == \old(acc) &&
(\forall int m; © <= m & & m < account.length & m != k;
\old(account[m]) == account[m]));

@@@@@@@@@@@
~

The Key tool splits the contract as shown in the screenshot. As already mentioned, in order to avoid
any issues that the position may cause, in this solution we declared the clause at the end of the spec,
as it is done in some standard examples.

x|

By Target By Proof

Contract Targets Contracts

0 JML operation contract 0

? D Bank self adddceouniacs) catchiexs)
addAccaunt(ing pre lacc = 0 & {exists intk; (0 ==k & k = selfaccountlenath & inlnt(k) & selfaccountlk] = 03 & (Morall intk; {0 ==k & k = selfa
finddint], inty post { exc = null-=exists int k; {0 == k & k = selfaccountlength & inlntik) & (selfaccount(k]@heapAtPre = 0 & { selfaccountlk
suspendAccauntiing mod allLocs

termination diarmond

JML normal_behavior operation contract 0

self adddccountiace) catohienc)
pre self.=inv=

post self.=inv= & exc = null
mod selfaccount™

termination diamond

Start Proof | | Cancel

