The Concept of Limited Adversaries

Ahto Buldas

Feb 21, 2020

Ahto Buldas

The Concept of Limited Adversaries

Feb 21, 2020 1 / 48

3

Computability

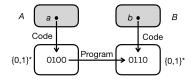
A function $A \xrightarrow{f} B$ is *computable* if:

- The elements of sets A and B are suitably *encoded*, and
- There exists a program (finite sequence of commands) that transforms the code Code(a) of any $a \in A$ to the code Code(b) of $b = f(a) \in B$.

Code set: $\{0,1\}^*$ the set of all finite binary sequences:

$$\{0,1\}^* = \{0,1\}^0 \cup \{0,1\}^1 \cup \ldots \cup \{0,1\}^k \cup \ldots,$$

where $\{0,1\}^k$ is the set of all k-element binary sequences. $\{0,1\}^0 = \{\bigcup\}$, where \bigcup is the empty bitstring (of length 0).



Feb 21, 2020 2 / 48

回 と く ヨ と く ヨ と

Non-Computable Functions

Countable set A: there is a bijective (one-to-one and onto) function $\mathbb{N} \to A$, i.e. the elements of A can be enumerated with natural numbers Not all functions are computable, because, for example, if $A = B = \mathbb{N}$:

- \bullet the set $\mathbb{N}^{\mathbb{N}}$ of all functions $\mathbb{N} \to \mathbb{N}$ is not countable
- the set $P \subset \{0,1\}^*$ of all finite programs is countable

Cantor's diagonal argument: For any enumerated set of functions $f_0, f_1, f_2, \ldots, f_k, \ldots$ of type $\mathbb{N} \to \mathbb{N}$, there is a function g that does not belong to the set. For example:

$$g(n) = f_n(n) + 1 .$$

Indeed, if $g = f_k$, then $f_k(k) = g(k) = f_k(k) + 1$, a contradiction.

There are meaningful and useful functions that are not computable.

イロト 不得下 イヨト イヨト 二日

Turing Machine

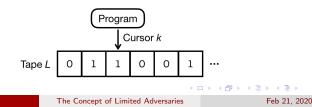
Ahto Buldas

Mathematical model of computation proposed by Alan Turing (1912–1954).

Turing machine has the following components:

4 / 48

- *Tape*: Infinite memory $L = (\ell_0, \ell_1, \ell_2, ...)$ with cells $\ell_i \in \{0, 1, ||\}$.
- Cursor $k \in \mathbb{N}$: only the cell ℓ_k is accessible. Computational steps can increment or decrement k, or do nothing with it. Initially, k = 0.
- Program: Finite set S of states s ∈ S, where s₀ is the initial state and h (halt) is the final state.



Program of a Turing Machine

The next state s', new content ℓ'_k of the tape and the new cursor position k' is computed by the functions:

$$\begin{array}{lll} s' &:= & \delta_s(s,\ell_k) \in S \\ \ell'_k &:= & \delta_\ell(s,\ell_k) \in \{0,1,\lfloor \rfloor \} \\ k' &:= & k + \delta_k(s,\ell_k) \in \{k-1,k,k+1\} \ , \ \text{i.e.} \ \ \delta_k(s,\ell_k) \in \{-1,0,+1\}. \end{array}$$

The initial state of the tape is considered to be the *input* and the final state as *output*.

For example, a function $\mathbb{N} \xrightarrow{f} \mathbb{N}$ is computable if there exists a Turing machine that transforms the initial state of the tape (if it represents an input x) to the code of y = f(x) which must be on the tape when the machine reaches the end-state h.

・ロト ・四ト ・ヨト ・ヨト

Zero-Function is Computable

For example, the zero function $f(x) = 0, \forall x \in \mathbb{N}$ is computable because we have the following Turing machine that computes it:

s	ℓ_k	s'	ℓ_k'	(k'-k)
s_0	0	s_1	0	+1
	1	$egin{array}{c c} s_1 \\ s_1 \\ h \end{array}$	0	+1
	ϵ	h	0	0
s_1	0	s_1		+1
	1	$egin{array}{c c} s_1 \\ s_1 \\ h \end{array}$		+1
	ϵ	h		0

Here we assume that initially there is the binary code of x on the tape ending with empty cell \parallel and 0 is encoded by the tape $0 \parallel \parallel \ldots$

イロト 不得下 イヨト イヨト 二日

Two Exercises

Ex 1: Find a Turing machine that computes the function y = 2x + 1 assuming that $x = b_0 2^0 + b_1 2^1 + \ldots + b_n 2^n$ (where $b_i \in \{0, 1\}$) is encoded by the tape $b_n b_{n-1} \ldots b_1 b_0 \parallel \sqcup \ldots$

Ex 2: The same as in Ex 1, but use the opposite order encoding $b_0b_1 \dots b_{n-1}b_n \parallel \parallel \dots$

Turing's Thesis

Though, Turing machine is a seemingly simple device, it is belived to be a universal model of computations.

Turing's thesis: Everything that can be computed, can be computed with a Turing machine.

This is not a mathematical statement because "everything that can be computed" is not a precise mathematical term.

(日) (周) (三) (三)

Measures of Computational Complexity

Juris Hartmanis (1928–) and Richard Stearns (1936–) started systematic studies in computational complexity

Running time: The number of state transitions before reaching the halt state h.

Memory: The number of memory cells used during the computation.

Program size: The number |S| of states.

Bachmann–Landau Notations: Big O

Proposed by Paul Bachmann (1837–1920) and Edmund Landau (1877–1938)

Let f and g be real-valued functions of type $\mathbb{N} \to \mathbb{R}$

f(n) = O(g(n)): There exists $c \in \mathbb{R}$ and $n_0 \in \mathbb{N}$ so that for every $n \ge n_0$:

 $f(n) \leq c \cdot g(n)$, or equivalently

$$\frac{f(n)}{g(n)} \leq c \ .$$

$$\begin{split} f(n) &= \Omega(g(n)) \text{ (Omega): iff } g(n) = O(f(n)). \\ f(n) &= \Theta(g(n)) \text{ (Theta): iff } f(n) = O(g(n)) \text{ and } f(n) = \Omega(g(n)). \end{split}$$

Bachmann–Landau Notations: Little o

f(n) = o(g(n)): iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$, i.e. for every $\epsilon > 0$ there exists n_0 such that for every $n \ge n_0$:

$$f(n) \leq \epsilon \cdot g(n)$$
 , or equivalently $rac{f(n)}{g(n)} \leq \epsilon$.

$$\begin{aligned} f(n) &= \omega(g(n)): \text{ iff } g(n) = o(f(n)). \\ f(n) &\sim g(n): \text{ iff } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1. \end{aligned}$$

(日) (周) (三) (三)

Combinatorial Problems

Decision Problem Instance: Given a description of a function f, decide whether there is ξ such that $f(\xi) = 0$.

Search Problem Instance: Given a description of a function f, find ξ such that $f(\xi) = 0$.

Decision Problem: A collection of decision problem instances of certain type.

Search Problem: A collection of search problem instances of certain type.

イロト イポト イヨト イヨト 二日

Primeness and Factoring

Primeness: Decide whether a given number $n \in \mathbb{N}$ is prime.

The corresponding function f_n :

$$f_n(\xi) = \begin{cases} 0 & \text{If } 1 < \gcd(\xi, n) < n \\ 1 & \text{otherwise} \end{cases}$$

Factoring: Given a composite number $n \in \mathbb{N}$, find a non-trivial divisor ξ . The corresponding function is the same f_n .

Primeness as a decision problem: The collection of the descriptions of all functions $f_n(\xi)$ with any $n \in \mathbb{N}$.

n is prime if and only if $\forall \xi \colon f_n(\xi) = 1$

(本語) (本語) (本語) (語)

Decision Problems and Languages

Definition (Language)

A language $L \subseteq \{0,1\}^*$ is any set of finite bit-strings.

Example: The language PRIMES consists of all bit-strings x that are binary representations of prime numbers n.

Language recognition problem: Given a bit-string x, decide whether $x \in L$.

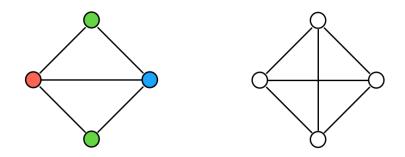
Every decision problem is equivalent to a language recognition problem! Primeness as a language recognition problem: Given a bit-string x, decide if $x \in PRIMES$.

イロト 不得下 イヨト イヨト 二日

3-Colouring

Definition (3-Colouring problem)

Given a graph decide whether the vertices can be coloured in a way that no two adjacent vertices are of the same color.



Boolean Satisfiability (SAT)

Definition (Boolean satisfiability(SAT) problem)

Given a Boolean formula, decide whether the atomic variables can be replaced with True and False so that the formula evaluates to True.

Definition (SAT language)

Given a coding rule Code, the set of all finite bitstrings c, for which there is a satisfiable Boolean formula φ , such that $c = \text{Code}(\varphi)$.

Definition (TAUTOLOGY language)

Given a coding rule Code, the set of all finite bitstrings c, for which there is a Boolean tautology φ , such that $c = \text{Code}(\varphi)$.

Feb 21, 2020 16 / 48

くほと くほと くほと

Class ${\bf P}$ and Cobham–Edmonds Thesis

Alan Cobham (1894–1973) and Jack Edmonds (1934–) were the first who defined feasible computations as polynomial-time computations.

Definition (Class P)

A language L belongs to class P if there is a Turing machine V (the *verifier*) and a function $t(n) = n^{O(1)}$, such that or every $x \in \{0, 1\}^*$:

• $x \in L$ iff V(x) outputs 1

• V(x) runs in time t(|x|)

Cobham–Edmonds thesis: computational problems can be feasibly solved on computational devices only if they lie in the complexity class \mathbf{P} .

$\mathsf{Class}\;\mathbf{NP}$

Definition (Class NP)

A language L belongs to class NP if there is a Turing machine V (the *verifier*) and a function $t(n) = n^{O(1)}$, such that or every $x \in \{0, 1\}^*$:

- $x \in L$ iff there is $\xi \in \{0, 1\}^{t(|x|)}$ (a *certificate*) so that $1 \leftarrow V(x, \xi)$
- $V(x,\xi)$ runs in time t(|x|)

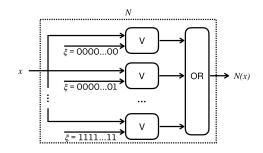
Example: SAT is in **NP**: the verifier $V(x, \xi)$ computes the value of the Boolean function x given a valuation ξ of its atomic variables.

- 4 同 6 4 日 6 4 日 6

Non-Deterministic Turing Machine (NDTM)

Definition (Non-Deterministic Turing Machine with running time t)

A machine N that uses an ordinary Turing machine V so that for any input $x \in \{0,1\}^*$ the machine executes $y_{\xi} \leftarrow V(x,\xi)$ for all $\xi \in \{0,1\}^{t(|x|)}$. If there is ξ so that $y_{\xi} = 1$, then $1 \leftarrow N(x)$, otherwise $0 \leftarrow N(x)$.



 $\mathbf{NP} = \mathsf{languages} \ \mathsf{recognizable} \ \mathsf{by} \ \mathsf{poly-time} \ \mathsf{NDTMs}$

Ahto Buldas

The Concept of Limited Adversaries

$\mathsf{Class}\ \mathbf{coNP}$

Definition (Class coNP)

A language L belongs to class **coNP** if there is a Turing machine V (the *verifier*) and a function $t(n) = n^{O(1)}$, such that or every $x \in \{0, 1\}^*$:

•
$$x \in L$$
 iff $1 \leftarrow V(x, \xi)$ for every $\xi \in \{0, 1\}^{t(|x|)}$

•
$$V(x,\xi)$$
 runs in time $t(|x|)$

Example: TAUTOLOGY is in **coNP**: the verifier $V(x, \xi)$ computes the value of the Boolean function x given a valuation ξ of its atomic variables. *Exercise*: Show that any language L is in **coNP** if and only if its complement $\overline{L} = \{x \in \{0, 1\}^* : x \notin L\}$ is in **NP**.

Non-Uniform Computations and the Class \mathbf{P}/\mathbf{poly}

Definition (Class P/poly)

A language L belongs to class \mathbf{P}/\mathbf{poly} if there is a Turing machine V (the *verifier*), a function $t(n) = n^{O(1)}$, and a sequence $(\xi_0, \xi_1, \xi_2, ...)$ of *advice strings* with size $|\xi_n| \in \{0, 1\}^{t(n)}$, such that or every $x \in \{0, 1\}^*$:

•
$$x \in L$$
 iff $1 \leftarrow \mathsf{V}(x, \xi_{|x|})$

•
$$V(x,\xi_{|x|})$$
 runs in time $t(|x|)$

Randomized Computations

Randomized TM: Uses additional input for a random string ω , i.e. the computation is $y \leftarrow \mathsf{M}(\omega, x)$, where $\omega \leftarrow \{0, 1\}^t$ is a uniformly chosen random string, where t (the number of random bits) is $t \ge T(\mathsf{M}, x)$, where $T(\mathsf{M}, x)$ is the worst-case running time of M.

Class ${\bf RP}$ and Monte Carlo Algorithms

Definition (Class **RP**)

A language L belongs to class **RP** if there is a Turing machine M_1 and a function $t(n) = n^{O(1)}$, such that or every $x \in \{0, 1\}^*$:

• If $x \in L$ then $\mathsf{P}_{\xi}[1 \leftarrow \mathsf{M}_1(x,\xi)] > \frac{1}{2}$ where $\xi \leftarrow \{0,1\}^{t(|x|)}$ is chosen uniformly at random

• If
$$x \notin L$$
 then $\mathsf{P}_{\xi}[1 \leftarrow \mathsf{M}_1(x,\xi)] = 0$

• $M_1(x,\xi)$ runs in time t(|x|)

Monte-Carlo algorithm: Given x, run $M_1(x,\xi)$ with m independent values of ξ . If $1 \leftarrow M_1(x,\xi)$ for some ξ , return 1, otherwise return 0.

If $x \in L$, then the Monte-Carlo algorithm returns 0 with probability $< \frac{1}{2^m}$.

- If the algorithm returns 1, then we know that $x \in L$.
- If the algorithm returns 0, then $x \notin L$ with probability $1 \frac{1}{2^m}$.

Class \mathbf{coRP} and Monte Carlo Algorithms

Definition (Class coRP)

A language L belongs to class \mathbf{coRP} if there is a Turing machine M_0 and a function $t(n) = n^{O(1)}$, such that or every $x \in \{0, 1\}^*$:

• If $x\in L$ then $\mathsf{P}_\xi[1\leftarrow\mathsf{M}_0(x,\xi)]=1$ where $\xi\leftarrow\{0,1\}^{t(|x|)}$ is chosen uniformly at random

• If
$$x \notin L$$
 then $\mathsf{P}_{\xi}[1 \leftarrow \mathsf{M}_0(x,\xi)] < \frac{1}{2}$

• $M_0(x,\xi)$ runs in time t(|x|)

Monte-Carlo algorithm: Given x, run $M_0(x,\xi)$ with m independent values of ξ . If $1 \leftarrow M_0(x,\xi)$ for some ξ , return 1, otherwise return 0.

If $x \notin L$, then the Monte-Carlo algorithm returns 1 with probability $< \frac{1}{2^m}$.

- If the algorithm returns 0, then we know that $x \notin L$.
- If the algorithm returns 1, then $x \in L$ with probability $1 \frac{1}{2^m}$.

Class **ZPP** and Las Vegas Algorithms

Definition (Class **ZPP**) $\mathbf{ZPP} = \mathbf{RP} \cap \mathbf{coRP}$

Las Vegas algorithm: Given x, run $M_1(x,\xi)$ and $M_0(x,\xi)$ with independently chosen ξ until $1 \leftarrow M_1(x,\xi)$ or $0 \leftarrow M_0(x,\xi)$.

- If $x \in L$, the Las Vegas algorithm returns 1
- If $x \notin L$, the Las Vegas algorithm returns 0
- The average running time is 4t(|x|)

通 ト イヨ ト イヨト

Class BPP and Majority Voting

Definition (Class BPP)

A language L belongs to class **BPP** if there is a Turing machine M and a function $t(n) = n^{O(1)}$, such that or every $x \in \{0, 1\}^*$:

- If $x \in L$ then $\mathsf{P}_{\xi}[1 \leftarrow \mathsf{M}(x,\xi)] > \frac{3}{4}$ where $\xi \leftarrow \{0,1\}^{t(|x|)}$ is chosen uniformly at random
- If $x \notin L$ then $\mathsf{P}_{\xi}[1 \leftarrow \mathsf{M}(x,\xi)] < \frac{1}{4}$

• $M(x,\xi)$ runs in time t(|x|)

Majority Voting: Given x, run $M(x,\xi)$ with m independent values of ξ . If more than $\frac{m}{2}$ outputs were 1, return 1, otherwise return 0.

How large should m be?: \rightsquigarrow Chernoff-Hoeffding bounds.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Chernoff-Hoeffding Bounds

Herman Chernoff (1923–) and Wassily Hoeffding (1914–1991) proved bounds on tail distributions of sums of independent random variables.

Theorem: Let x_1, \ldots, x_m be independent identically distributed 0/1 random variables, $p = P[x_i = 1]$ and $X = \sum_{i=1}^m x_i$. Then for any $0 \le \Theta \le 1$:

$$\mathsf{P}[X \ge (1+\Theta)pm] \le e^{-\frac{\Theta^2}{3}pm} \tag{1}$$

$$\mathsf{P}[X \le (1 - \Theta)pm] \le e^{-\frac{\Theta^2}{2}pm} .$$
(2)

The proof is based on two lemmas:

Lemma 1: If $0 \le \Theta \le 1$ then $-\frac{\Theta^2}{2} \le \Theta - (1+\Theta)\ln(1+\Theta) \le -\frac{\Theta^2}{3}$. *Lemma 2*: If $0 \le \Theta \le 1$ then $\Theta - (1-\Theta)\ln(1-\Theta) \ge \frac{\Theta^2}{2}$.

Proof of the First Chernoff-Hoeffding Bound (1)

$$\begin{split} \mathsf{P}[X \geq (1+\Theta)pm] &= \mathsf{P}[e^{tX} \geq e^{t(1+\Theta)pm}] \text{ for any } 0 < t. \\ \mathsf{By Markov's inequality: } \mathsf{P}[e^{tX} \geq k \cdot \mathbf{E}[e^{tX}]] \leq 1/k \text{ for any } k > 0. \\ \mathsf{We take } k &= e^{t(1+\Theta)pm}(\mathbf{E}[e^{tX}])^{-1}. \text{ Then} \\ \mathsf{P}[X \geq (1+\Theta)pm] \leq e^{-t(1+\Theta)pm} \mathbf{E}[e^{tX}] \ , \\ \mathsf{and as } \mathbf{E}[e^{tX}] &= (\mathbf{E}[e^{tx_1}])^m = (1+p(e^t-1))^m, \text{ we have:} \\ \mathsf{P}[X \geq (1+\Theta)pm] \ \leq \ e^{-t(1+\Theta)pm}(1+p(e^t-1))^m \\ &< \ e^{-t(1+\Theta)pm} \cdot e^{pm(e^t-1)} \ . \end{split}$$

This holds because $1 + a \le e^a$ for every a > 0. In our case $a = p(e^t - 1)$. Finally, by taking $t = \ln(1 + \Theta)$, we obtain from Lemma 1 that

$$\mathsf{P}[X \ge (1+\Theta)pm] \le e^{pm[\Theta - (1+\Theta)\ln(1+\Theta)]} \le e^{-\frac{\Theta^2}{3}pm}$$

イロト 不得下 イヨト イヨト

Proof of the Second Chernoff-Hoeffding Bound (2)

 $\mathsf{P}[X < (1 - \Theta)pm] = \mathsf{P}[pm - X > \Theta pm] = \mathsf{P}[e^{t(pm - X)} > e^{t\Theta pm}] \text{ for any } 0 < t.$ By Markov's inequality: $P[e^{t(pm-X)} \ge k \cdot \mathbf{E}[e^{t(pm-X)}]] \le \frac{1}{k}$ for any k > 0. We take $k = e^{t\Theta pm} (\mathbf{E}[e^{t(pm-X)}])^{-1}$. Then $\mathsf{P}[X < (1 - \Theta)pm] < e^{-t\Theta pm} \cdot \mathbf{E}[e^{t(pm-X)}] = e^{t(1 - \Theta)pm} \cdot \mathbf{E}[e^{-tX}] ,$ and as $\mathbf{E}[e^{-tX}] = (\mathbf{E}[e^{-tx_1}])^m = (1 - p(1 - e^{-t}))^m$, we have: $\mathsf{P}[X \le (1 - \Theta)pm] \le e^{-t(1 - \Theta)pm}(1 - p(1 - e^{-t}))^m$ $< e^{-t(1-\Theta)pm} \cdot e^{-pm(1-e^{-t})}$ $= e^{-pm[t(1-\Theta)+1-e^{-t}]}$

Finally, by taking $t = -\ln(1-\Theta)$ we obtain from Lemma 2 that

$$\mathsf{P}[X \le (1-\Theta)pm] \le e^{-pm[\Theta - (1-\Theta)\ln(1-\Theta)]} \le e^{-\frac{\Theta^2}{2}pm}.$$

Proof of Lemma 1

Lemma 1: If $0 \le \Theta \le 1$ then $-\frac{\Theta^2}{2} \le \Theta - (1 + \Theta) \ln(1 + \Theta) \le -\frac{\Theta^2}{3}$. *Proof*: First, note that

$$\Theta - (1+\Theta)\ln(1+\Theta) = \Theta - (1+\Theta) \cdot \left(\frac{\Theta}{1} - \frac{\Theta^2}{2} + \frac{\Theta^3}{3} - \frac{\Theta^4}{4} + \dots\right)$$
$$= -\frac{\Theta^2}{1\cdot 2} + \frac{\Theta^3}{2\cdot 3} - \frac{\Theta^4}{3\cdot 4} + \frac{\Theta^5}{4\cdot 5} \dots$$
$$= \sum_{n=2}^{\infty} (-1)^{n-1} \frac{\Theta^n}{n(n-1)} .$$

As the series $r = \frac{\Theta^3}{2 \cdot 3} - \frac{\Theta^4}{3 \cdot 4} + \frac{\Theta^5}{4 \cdot 5} \dots$ is with alternating signs and their absolute values are strongly decreasing, because $\frac{\Theta^n}{(n-1)n} \geq \frac{\Theta^{n+1}}{n(n+1)}$ directly follows from $\frac{n-1}{n+1}\Theta \leq 1$. Hence, the sum of this series is positive, because the fist term is positive.

Proof of Lemma 1 continues

Consequently:

$$\Theta - (1 + \Theta) \ln(1 + \Theta) = -\frac{\Theta^2}{2} + r \ge -\frac{\Theta^2}{2}$$

Analogously, we claim that the series $s = \frac{\Theta^4}{3 \cdot 4} - \frac{\Theta^5}{4 \cdot 5} + \frac{\Theta^6}{4 \cdot 5} - \dots$ has positive sum and hence:

$$\Theta - (1+\Theta)\ln(1+\Theta) = -\frac{\Theta^2}{2} + \frac{\Theta^3}{6} - s \le -\frac{\Theta^2}{2} + \frac{\Theta^3}{6} \le -\frac{\Theta^2}{2} + \frac{\Theta^2}{6}$$
$$= -\frac{\Theta^2}{3} \cdot$$

Feb 21, 2020 31 / 48

•

(日) (周) (三) (三)

Proof of Lemma 2

Lemma 2: If $0 \le \Theta \le 1$ then $\Theta - (1 - \Theta) \ln(1 - \Theta) \ge \frac{\Theta^2}{2}$. *Proof*: It is easy to see that

$$\Theta - (1 - \Theta) \ln(1 - \Theta) = \frac{\Theta^2}{2 \cdot 1} + \frac{\Theta^3}{3 \cdot 2} + \frac{\Theta^4}{4 \cdot 3} + \ldots = \sum_{n=2}^{\infty} \frac{\Theta^n}{n(n-1)} ,$$

from which the inequality directly follows.

イロト 不得 トイヨト イヨト 二日

Analysis of the Voting Algorithm

For $i = 1 \dots m$ let $x_i \in \{0, 1\}$ be the error variables, i.e. $x_i = 1$ iff the *i*-th sample b_i of M(x) wrongly reflects the truth value of $x \in L$.

By the definition of **BPP**, we have $p = P[x_i = 1] \leq \frac{1}{4}$.

By taking $\Theta=1$ in the first Chernoff-Hoeffding bound, we obtain

$$\mathsf{P}\left[\sum_{i=1}^m x_i \geq \frac{m}{2}\right] \leq e^{-\frac{m}{12}} \ .$$

Hence, the voting algorithm has error $< e^{-\frac{m}{12}}$.

For example, if the desired error is e^{-100} , it is sufficient to take m = 1200.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

\mathbf{BPP}_{ϵ}

1

Let $\epsilon \colon \mathbb{N} \to [0,1]$ be a function.

Definition (Class \mathbf{BPP}_{ϵ})

A language $L \subseteq \{0,1\}^*$ belongs to the class \mathbf{BPP}_{ϵ} if there is a poly-time probabilistic Turing machine N such that for every $x \in \{0,1\}^n$:

•
$$x \in L \Rightarrow \mathsf{P}[N(x) = 1] > 1 - \epsilon(|x|)$$

•
$$x \notin L \Rightarrow \mathsf{P}[N(x) = 1] < \epsilon(|x|)$$

Exercise: By using Chernoff bounds, prove the following: • If $\epsilon(n) = 2^{-n^{O(1)}}$, then $\mathbf{BPP}_{\epsilon} = \mathbf{BPP}$ • If $\epsilon(n) = n^{-O(1)}$, then $\mathbf{BPP}_{\frac{1}{2}-\epsilon} = \mathbf{BPP}$

・聞き くほき くほき 二日

Karp Reductions

Defined by Richard Manning Karp (1935–).

Reduce one combinatorial problem to another.

Definition (Karp reduction)

A *Karp reduction* of a language L_1 to a language L_2 is a poly-time computable function $f: \{0,1\}^* \to \{0,1\}^*$, such that for every $x \in \{0,1\}^*$:

$$x \in L_1 \quad \Leftrightarrow \quad f(x) \in L_2$$

We write $L_1 \leq_p L_2$ if there is a Karp reduction of L_1 to L_2 .

Exercise 1: Show that if $L_1 \leq_p L_2$ and $L_2 \leq_p L_3$, then $L_1 \leq_p L_3$.

Exercise 2: Show that if $L_2 \in \mathbf{P}$ and $L_1 \leq_p L_2$, then $L_1 \in \mathbf{P}$.

Exercise 3: Show that if $L_2 \in \mathbf{BPP}$ and $L_1 \leq_p L_2$, then $L_1 \in \mathbf{BPP}$.

NP-Completeness and Cook-Levin Theorem

Stephen Cook (1939–) and Leonid Levin (1948–) proved the existence of \mathbf{NP} -complete problems.

Definition (NP-hardness, NP-completeness)

A language L is **NP**-hard, if $L' \leq_p L$ for every $L' \in$ **NP**. If, in addition, $L \in$ **NP**, then L is said to be **NP**-complete.

Theorem (Cook, Levin, 1971)

Satisfiability (SAT) is NP-complete.

Exercise 1: Show that if $L' \leq_p L$ and L' is NP-complete, then L is NP-hard.

Exercise 2: Show that if SAT $\leq_p L$ and $L \in \mathbf{NP}$, then L is \mathbf{NP} -complete.

Other NP-Complete Problems

In 1972, Richard Karp proved \mathbf{NP} -completeness of 21 combinatorial problems, including:

3-Colouring: Given a graph, decide whether the vertices can be coloured in a way that no two adjacent vertices are of the same color.

Subset sum: Given a set (or multiset) of integers, decide if there is a non-empty subset whose sum is zero.

Clique: Given a graph and an integer k, decide if there is a complete subgraph with k vertices.

< 回 ト < 三 ト < 三 ト

${\bf P}$ vs ${\bf NP}:$ The Holy Grail of Computer Science

John Edward Hopcroft (1939–), after a fierce debate at the STOC 1971 conference, brought everyone to a consensus that $\mathbf{P} = \mathbf{NP}$ should be solved soon.

So far, it is one of the greatest unsolved problems of mathematics.

It is one of the seven *Millennium Prize Problems*: The Clay Mathematics Institute offers 1 million USD reward for proving or disproving $\mathbf{P} = \mathbf{NP}$.

Most computer scientists believe that $\mathbf{P} \neq \mathbf{NP}$.

Oracle Machines

Oracle is any function $\mathbb{O}\colon \{0,1\}^* \to \{0,1\}^*$, not necessarily computable.

Definition (Oracle Machine M^{0})

A Turing machine that, in addition to ordinary configuration, has:

- oracle tape with oracle cursor for read/write operations
- oracle calls (can be executed at any state): for any $x \in \{0, 1\}^*$ written in the oracle tape, the contents of the oracle tape is instantly replaced with $\mathcal{O}(x)$

The number of oracle calls of M^0 does not exceed the running time t.

< 回 ト < 三 ト < 三 ト

Turing Reductions

Definition (Turing reduction)

A *Turing reduction* of a language L_1 to a language L_2 is a poly-time oracle machine M^0 such that for every $x \in \{0, 1\}^*$:

$$x \in L_1 \quad \Leftrightarrow \quad 1 \leftarrow M^{\mathcal{O}}(x) \;$$

where O is the characteristic function of L_2 , i.e. for every z:

$$\mathcal{O}(z) = \begin{cases} 1 & \text{if } z \in L_2 \\ 0 & \text{if } z \notin L_2 \end{cases}$$

We write $L_1 \leq_{p}^{T} L_2$ if there is a Turing reduction of L_1 to L_2 .

Security and Proofs of Security

Breaking a cryptosystem is solving an instance of a *search problem*.

Practically Secure Cryptosystem: Too costly to break.

Proof of Practical Security: If the cryptosystem can be broken with cost S, then a hard instance of a combinatorial problem can be solved with cost S'.

Polynomially Secure Cryptosystem: Any efficient (poly-time) adversary has negligible success probability.

Proof of Polynomial Security: A hard combinatorial problem can be Turing-reduced to the problem of breaking the cryptosystem.

Polynomial security is of limited practical relevance, because real-life cryptosystems tend to be fixed and finite.

イロト 不得 トイヨト イヨト 二日

Practical Measures of Computational Costs and Security

Intuition: A cryptosystem is S-secure, if it cannot be broken with cost less than S.

Engineers have to estimate the *total cost* of potential attacks, including:

- Algorithm development
- Coding
- Hardware (memory, processors, etc.)
- Energy

Total cost is computed from *technical complexity*, given the (monetary) prices of computational resources.

Technical complexity itself must be *price-independent*.

• • = • • = •

Time as a Measure of Technical Complexity

Computational time alone is not a good measure for technical complexity:

Theorem

For every function $f: \{0,1\}^n \to \{0,1\}^n$ (where *n* is constant) there is a Turing machine M that computes the function in time t = 2n.

Proof.

The machine M has $(n + 1)2^n$ states: a tree like structure of $2^n - 1$ of states to encode the input x into one of 2^n possible input value states. Then for every such state we have a sequence of n states to write out the output $f(x) \in \{0,1\}^n$, and the halt state. The machine needs n steps to determine the input state and n steps to write out the output.

By such definition, no fixed one-way functions exist!

イロト 不得下 イヨト イヨト

Time + Code Size

Much more relevant complexity measure.

Can be converted to pure time-measure.

Assumption: adversaries have to load their program before the attack.

Under such assumption, program size converts to computational time.

Time-Success Ratio

Attacks may succeed with certain probability.

Definition (S-security)

A primitive is *S*-secure if every adversary with running time t has success probability $\delta \leq \frac{t}{S}$.

Equivalently:

```
Definition (S-security)
```

A primitive is *S*-secure if every adversary has time-success ratio $\frac{t}{\delta} \geq S$.

Time-Success Ratio: Motivation

Time-success ratio $\frac{t}{\delta}$ is a natural measure of technical complexity.

Consider a there is a prize of ${\cal P}$ monetary units offered for breaking a cryptosystem.

You know an attack A with running time t and success probability δ .

Under which conditions it is economically beneficial to take the challenge?

Let α denote the total cost of one computational step. Then:

- the cost of the attack is αt
- the average income is δP

Hence, the attack is beneficial if $\delta P - \alpha t > 0$, i.e. if $\frac{t}{\delta} < \frac{P}{\alpha}$, where $\frac{P}{\alpha}$ is the prize expressed in computational-step units.

Hence, $\frac{t}{\delta}$ measures the cost in computational steps.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Security Bits

Definition (Security bits)

A primitive has k bits of security iff it is S-secure, where $\log_2 S \ge k$.

Usually, the time t is measured in *block-cipher units*.

1 block-cipher unit = time needed for the encryption of one block of data with an ordinary block-cipher, or computing a hash of one block of data.

Example: One-Way Functions

Let $f: X \to Y$ be a function.

Adversary is a probabilistic Turing Machine A that participates in the following attack scenario:

1 An input $x \leftarrow X$ is chosen randomly.

2 The output
$$y = f(x)$$
 is computed.

- **③** Given y as input, the adversary A computes $x' \leftarrow A(y)$.
- Adversary is successful iff f(x') = y.

Definition (S-secure One-Way Function)

A function f is S-secure one-way if every adversary A has time-success ratio $\frac{t}{\delta} \geq S$.

イロト イポト イヨト イヨト