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Theory

Computability

A function A
f→ B is computable if:

The elements of sets A and B are suitably encoded, and

There exists a program (finite sequence of commands) that transforms
the code Code(a) of any a ∈ A to the code Code(b) of b = f(a) ∈ B.

Code set: {0, 1}∗ the set of all finite binary sequences:

{0, 1}∗ = {0, 1}0 ∪ {0, 1}1 ∪ . . . ∪ {0, 1}k ∪ . . . ,

where {0, 1}k is the set of all k-element binary sequences.

{0, 1}0 = {bc}, where bc is the empty bitstring (of length 0).
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Theory

Non-Computable Functions

Countable set A: there is a bijective (one-to-one and onto) function
N→ A, i.e. the elements of A can be enumerated with natural numbers

Not all functions are computable, because, for example, if A = B = N:

the set NN of all functions N→ N is not countable

the set P ⊂ {0, 1}∗ of all finite programs is countable

Cantor’s diagonal argument: For any enumerated set of functions
f0, f1, f2, . . . , fk, . . . of type N→ N, there is a function g that does not
belong to the set. For example:

g(n) = fn(n) + 1 .

Indeed, if g = fk, then fk(k) = g(k) = fk(k) + 1, a contradiction.

There are meaningful and useful functions that are not computable.
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Theory

Turing Machine

Mathematical model of computation proposed by Alan
Turing (1912–1954).

Turing machine has the following components:

Tape: Infinite memory L = (`0, `1, `2, . . .) with cells `i ∈ {0, 1, bc}.
Cursor k ∈ N: only the cell `k is accessible. Computational steps can
increment or decrement k, or do nothing with it. Initially, k = 0.

Program: Finite set S of states s ∈ S, where s0 is the initial state
and h (halt) is the final state.
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Theory

Program of a Turing Machine

The next state s′, new content `′k of the tape and the new cursor position
k′ is computed by the functions:

s′ := δs(s, `k) ∈ S
`′k := δ`(s, `k) ∈ {0, 1, bc}
k′ := k + δk(s, `k) ∈ {k − 1, k, k + 1} , i.e. δk(s, `k) ∈ {−1, 0,+1}.

The initial state of the tape is considered to be the input and the final
state as output.

For example, a function N f→ N is computable if there exists a Turing
machine that transforms the initial state of the tape (if it represents an
input x) to the code of y = f(x) which must be on the tape when the
machine reaches the end-state h.
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Theory

Zero-Function is Computable

For example, the zero function f(x) = 0,∀x ∈ N is computable because
we have the following Turing machine that computes it:

s `k s′ `′k (k′ − k)

s0 0 s1 0 +1
1 s1 0 +1
ε h 0 0

s1 0 s1 bc +1
1 s1 bc +1
ε h bc 0

Here we assume that initially there is the binary code of x on the tape
ending with empty cell bc and 0 is encoded by the tape 0bcbc . . .
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Theory

Two Exercises

Ex 1: Find a Turing machine that computes the function y = 2x+ 1
assuming that x = b020 + b121 + . . .+ bn2n (where bi ∈ {0, 1}) is encoded
by the tape bnbn−1 . . . b1b0bcbc . . .

Ex 2: The same as in Ex 1, but use the opposite order encoding
b0b1 . . . bn−1bnbcbc . . .
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Theory

Turing’s Thesis

Though, Turing machine is a seemingly simple device, it is belived to be a
universal model of computations.

Turing’s thesis: Everything that can be computed, can be computed with
a Turing machine.

This is not a mathematical statement because “everything that can be
computed” is not a precise mathematical term.
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Theory

Measures of Computational Complexity

Juris Hartmanis (1928–) and Richard Stearns
(1936–) started systematic studies in computa-
tional complexity

Running time: The number of state transitions before reaching the halt
state h.

Memory: The number of memory cells used during the computation.

Program size: The number |S| of states.
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Theory

Bachmann–Landau Notations: Big O

Proposed by Paul Bachmann (1837–1920) and
Edmund Landau (1877–1938)

Let f and g be real-valued functions of type N→ R

f(n) = O(g(n)): There exists c ∈ R and n0 ∈ N so that for every n ≥ n0:

f(n) ≤ c · g(n) , or equivalently
f(n)

g(n)
≤ c .

f(n) = Ω(g(n)) (Omega): iff g(n) = O(f(n)).

f(n) = Θ(g(n)) (Theta): iff f(n) = O(g(n)) and f(n) = Ω(g(n)).
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Theory

Bachmann–Landau Notations: Little o

f(n) = o(g(n)): iff lim
n→∞

f(n)
g(n) = 0, i.e. for every ε > 0 there exists n0 such

that for every n ≥ n0:

f(n) ≤ ε · g(n) , or equivalently
f(n)

g(n)
≤ ε .

f(n) = ω(g(n)): iff g(n) = o(f(n)).

f(n) ∼ g(n): iff lim
n→∞

f(n)
g(n) = 1.

Ahto Buldas The Concept of Limited Adversaries Feb 21, 2020 11 / 48



Theory

Combinatorial Problems

Decision Problem Instance: Given a description of a function f , decide
whether there is ξ such that f(ξ) = 0.

Search Problem Instance: Given a description of a function f , find ξ such
that f(ξ) = 0.

Decision Problem: A collection of decision problem instances of certain
type.

Search Problem: A collection of search problem instances of certain type.
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Theory

Primeness and Factoring

Primeness: Decide whether a given number n ∈ N is prime.

The corresponding function fn:

fn(ξ) =

{
0 If 1 < gcd(ξ, n) < n
1 otherwise

Factoring: Given a composite number n ∈ N, find a non-trivial divisor ξ.

The corresponding funcion is the same fn.

Primeness as a decision problem: The collection of the descriptions of all
functions fn(ξ) with any n ∈ N.

n is prime if and only if ∀ξ : fn(ξ) = 1

Ahto Buldas The Concept of Limited Adversaries Feb 21, 2020 13 / 48



Theory

Decision Problems and Languages

Definition (Language)

A language L ⊆ {0, 1}∗ is any set of finite bit-strings.

Example: The language PRIMES consists of all bit-strings x that are
binary representations of prime numbers n.

Language recognition problem: Given a bit-string x, decide whether x ∈ L.

Every decision problem is equivalent to a language recognition problem!

Primeness as a language recognition problem: Given a bit-string x, decide
if x ∈ PRIMES.
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Theory

3-Colouring

Definition (3-Colouring problem)

Given a graph decide whether the vertices can be coloured in a way that
no two adjacent vertices are of the same color.

Ahto Buldas The Concept of Limited Adversaries Feb 21, 2020 15 / 48



Theory

Boolean Satisfiability (SAT)

Definition (Boolean satisfiability(SAT) problem)

Given a Boolean formula, decide whether the atomic variables can be
replaced with True and False so that the formula evaluates to True.

Definition (SAT language)

Given a coding rule Code, the set of all finite bitstrings c, for which there
is a satisfiable Boolean formula ϕ, such that c = Code(ϕ).

Definition (TAUTOLOGY language)

Given a coding rule Code, the set of all finite bitstrings c, for which there
is a Boolean tautology ϕ, such that c = Code(ϕ).
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Theory

Class P and Cobham–Edmonds Thesis

Alan Cobham (1894–1973) and Jack Ed-
monds (1934–) were the first who defined
feasible computations as polynomial-time
computations.

Definition (Class P)

A language L belongs to class P if there is a Turing machine V (the
verifier) and a function t(n) = nO(1), such that or every x ∈ {0, 1}∗:

x ∈ L iff V(x) outputs 1

V(x) runs in time t(|x|)

Cobham–Edmonds thesis: computational problems can be feasibly solved
on computational devices only if they lie in the complexity class P.
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Theory

Class NP

Definition (Class NP)

A language L belongs to class NP if there is a Turing machine V (the
verifier) and a function t(n) = nO(1), such that or every x ∈ {0, 1}∗:

x ∈ L iff there is ξ ∈ {0, 1}t(|x|) (a certificate) so that 1← V(x, ξ)

V(x, ξ) runs in time t(|x|)

Example: SAT is in NP: the verifier V(x, ξ) computes the value of the
Boolean function x given a valuation ξ of its atomic variables.
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Theory

Non-Deterministic Turing Machine (NDTM)

Definition (Non-Deterministic Turing Machine with running time t)

A machine N that uses an ordinary Turing machine V so that for any input
x ∈ {0, 1}∗ the machine executes yξ ← V(x, ξ) for all ξ ∈ {0, 1}t(|x|). If
there is ξ so that yξ = 1, then 1← N(x), otherwise 0← N(x).

NP = languages recognizable by poly-time NDTMs
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Theory

Class coNP

Definition (Class coNP)

A language L belongs to class coNP if there is a Turing machine V (the
verifier) and a function t(n) = nO(1), such that or every x ∈ {0, 1}∗:

x ∈ L iff 1← V(x, ξ) for every ξ ∈ {0, 1}t(|x|)

V(x, ξ) runs in time t(|x|)

Example: TAUTOLOGY is in coNP: the verifier V(x, ξ) computes the
value of the Boolean function x given a valuation ξ of its atomic variables.

Exercise: Show that any language L is in coNP if and only if its
complement L = {x ∈ {0, 1}∗ : x 6∈ L} is in NP.
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Theory

Non-Uniform Computations and the Class P/poly

Definition (Class P/poly)

A language L belongs to class P/poly if there is a Turing machine V (the
verifier), a function t(n) = nO(1), and a sequence (ξ0, ξ1, ξ2, . . .) of advice
strings with size |ξn| ∈ {0, 1}t(n), such that or every x ∈ {0, 1}∗:

x ∈ L iff 1← V(x, ξ|x|)

V(x, ξ|x|) runs in time t(|x|)
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Theory

Randomized Computations

Randomized TM: Uses additional input for a random string ω, i.e. the
computation is y ← M(ω, x), where ω ← {0, 1}t is a uniformly chosen
random string, where t (the number of random bits) is t ≥ T (M, x), where
T (M, x) is the worst-case running time of M.
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Theory

Class RP and Monte Carlo Algorithms

Definition (Class RP)

A language L belongs to class RP if there is a Turing machine M1 and a
function t(n) = nO(1), such that or every x ∈ {0, 1}∗:

If x ∈ L then Pξ[1← M1(x, ξ)] > 1
2 where ξ ← {0, 1}t(|x|) is chosen

uniformly at random

If x 6∈ L then Pξ[1← M1(x, ξ)] = 0

M1(x, ξ) runs in time t(|x|)

Monte-Carlo algorithm: Given x, run M1(x, ξ) with m independent values
of ξ. If 1← M1(x, ξ) for some ξ, return 1, otherwise return 0.

If x ∈ L, then the Monte-Carlo algorithm returns 0 with probability < 1
2m .

If the algorithm returns 1, then we know that x ∈ L.

If the algorithm returns 0, then x 6∈ L with probability 1− 1
2m .
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Theory

Class coRP and Monte Carlo Algorithms

Definition (Class coRP)

A language L belongs to class coRP if there is a Turing machine M0 and
a function t(n) = nO(1), such that or every x ∈ {0, 1}∗:

If x ∈ L then Pξ[1← M0(x, ξ)] = 1 where ξ ← {0, 1}t(|x|) is chosen
uniformly at random

If x 6∈ L then Pξ[1← M0(x, ξ)] < 1
2

M0(x, ξ) runs in time t(|x|)

Monte-Carlo algorithm: Given x, run M0(x, ξ) with m independent values
of ξ. If 1← M0(x, ξ) for some ξ, return 1, otherwise return 0.

If x 6∈ L, then the Monte-Carlo algorithm returns 1 with probability < 1
2m .

If the algorithm returns 0, then we know that x 6∈ L.

If the algorithm returns 1, then x ∈ L with probability 1− 1
2m .
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Theory

Class ZPP and Las Vegas Algorithms

Definition (Class ZPP)

ZPP = RP ∩ coRP

Las Vegas algorithm: Given x, run M1(x, ξ) and M0(x, ξ) with
independently chosen ξ until 1← M1(x, ξ) or 0← M0(x, ξ).

If x ∈ L, the Las Vegas algorithm returns 1

If x 6∈ L, the Las Vegas algorithm returns 0

The average running time is 4t(|x|)
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Theory

Class BPP and Majority Voting

Definition (Class BPP)

A language L belongs to class BPP if there is a Turing machine M and a
function t(n) = nO(1), such that or every x ∈ {0, 1}∗:

If x ∈ L then Pξ[1← M(x, ξ)] > 3
4 where ξ ← {0, 1}t(|x|) is chosen

uniformly at random

If x 6∈ L then Pξ[1← M(x, ξ)] < 1
4

M(x, ξ) runs in time t(|x|)

Majority Voting: Given x, run M(x, ξ) with m independent values of ξ. If
more than m

2 outputs were 1, return 1, otherwise return 0.

How large should m be?:  Chernoff-Hoeffding bounds.
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Theory

Chernoff-Hoeffding Bounds

Herman Chernoff (1923–) and Wassily Hoeffding
(1914–1991) proved bounds on tail distributions
of sums of independent random variables.

Theorem: Let x1, . . . , xm be independent identically distributed 0/1
random variables, p=P[xi = 1] and X=

∑m
i=1 xi. Then for any 0≤Θ≤1:

P[X ≥ (1 + Θ)pm] ≤ e−
Θ2

3
pm (1)

P[X ≤ (1−Θ)pm] ≤ e−
Θ2

2
pm . (2)

The proof is based on two lemmas:

Lemma 1: If 0 ≤ Θ ≤ 1 then −Θ2

2 ≤ Θ− (1 + Θ) ln(1 + Θ) ≤ −Θ2

3 .

Lemma 2: If 0 ≤ Θ ≤ 1 then Θ− (1−Θ) ln(1−Θ) ≥ Θ2

2 .
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Theory

Proof of the First Chernoff-Hoeffding Bound (1)

P[X ≥ (1 + Θ)pm] = P[etX ≥ et(1+Θ)pm] for any 0 < t.

By Markov’s inequality: P[etX ≥ k ·E[etX ]] ≤ 1/k for any k > 0.

We take k = et(1+Θ)pm(E[etX ])−1. Then

P[X ≥ (1 + Θ)pm] ≤ e−t(1+Θ)pm
E[etX ] ,

and as E[etX ] = (E[etx1 ])m = (1 + p(et − 1))m, we have:

P[X ≥ (1 + Θ)pm] ≤ e−t(1+Θ)pm(1 + p(et − 1))m

≤ e−t(1+Θ)pm · epm(et−1) .

This holds because 1 + a ≤ ea for every a > 0. In our case a = p(et − 1).

Finally, by taking t = ln(1 + Θ), we obtain from Lemma 1 that

P[X ≥ (1 + Θ)pm] ≤ epm[Θ−(1+Θ) ln(1+Θ)] ≤ e−
Θ2

3
pm .
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Theory

Proof of the Second Chernoff-Hoeffding Bound (2)

P[X≤(1−Θ)pm]=P[pm−X≥Θpm]=P[et(pm−X)≥etΘpm] for any 0 < t.

By Markov’s inequality: P[et(pm−X) ≥ k ·E[et(pm−X)]] ≤ 1
k for any k > 0.

We take k = etΘpm(E[et(pm−X)])−1. Then

P[X ≤ (1−Θ)pm] ≤ e−tΘpm ·E[et(pm−X)] = et(1−Θ)pm ·E[e−tX ] ,

and as E[e−tX ] = (E[e−tx1 ])m = (1− p(1− e−t))m, we have:

P[X ≤ (1−Θ)pm] ≤ e−t(1−Θ)pm(1− p(1− e−t))m

≤ e−t(1−Θ)pm · e−pm(1−e−t)

= e−pm[t(1−Θ)+1−e−t] .

Finally, by taking t = − ln(1−Θ) we obtain from Lemma 2 that

P[X ≤ (1−Θ)pm] ≤ e−pm[Θ−(1−Θ) ln(1−Θ)] ≤ e−
Θ2

2
pm.
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Theory

Proof of Lemma 1

Lemma 1: If 0 ≤ Θ ≤ 1 then −Θ2

2 ≤ Θ− (1 + Θ) ln(1 + Θ) ≤ −Θ2

3 .

Proof: First, note that

Θ− (1 + Θ) ln(1 + Θ) = Θ− (1 + Θ) ·
(

Θ

1
− Θ2

2
+

Θ3

3
− Θ4

4
+ . . .

)
= − Θ2

1 · 2
+

Θ3

2 · 3
− Θ4

3 · 4
+

Θ5

4 · 5
. . .

=

∞∑
n=2

(−1)n−1 Θn

n(n− 1)
.

As the series r = Θ3

2·3 −
Θ4

3·4 + Θ5

4·5 . . . is with alternating signs and their

absolute values are strongly decreasing, because Θn

(n−1)n ≥
Θn+1

n(n+1) directly

follows from n−1
n+1Θ ≤ 1. Hence, the sum of this series is positive, because

the fist term is positive.
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Theory

Proof of Lemma 1 continues

Consequently:

Θ− (1 + Θ) ln(1 + Θ) = −Θ2

2
+ r ≥ −Θ2

2
.

Analogously, we claim that the series s = Θ4

3·4 −
Θ5

4·5 + Θ6

4·5 − . . . has positive
sum and hence:

Θ− (1 + Θ) ln(1 + Θ) = −Θ2

2
+

Θ3

6
− s ≤ −Θ2

2
+

Θ3

6
≤ −Θ2

2
+

Θ2

6

= −Θ2

3
.
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Theory

Proof of Lemma 2

Lemma 2: If 0 ≤ Θ ≤ 1 then Θ− (1−Θ) ln(1−Θ) ≥ Θ2

2 .

Proof: It is easy to see that

Θ− (1−Θ) ln(1−Θ) =
Θ2

2 · 1
+

Θ3

3 · 2
+

Θ4

4 · 3
+ . . . =

∞∑
n=2

Θn

n(n− 1)
,

from which the inequality directly follows.
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Theory

Analysis of the Voting Algorithm

For i = 1 . . .m let xi ∈ {0, 1} be the error variables, i.e. xi = 1 iff the i-th
sample bi of M(x) wrongly reflects the truth value of x ∈ L.

By the definition of BPP, we have p = P[xi = 1] ≤ 1
4 .

By taking Θ = 1 in the first Chernoff-Hoeffding bound, we obtain

P

[
m∑
i=1

xi ≥
m

2

]
≤ e−

m
12 .

Hence, the voting algorithm has error < e−
m
12 .

For example, if the desired error is e−100, it is sufficient to take m = 1200.
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Theory

BPPε

Let ε : N→ [0, 1] be a function.

Definition (Class BPPε)

A language L ⊆ {0, 1}∗ belongs to the class BPPε if there is a poly-time
probabilistic Turing machine N such that for every x ∈ {0, 1}n:

x ∈ L ⇒ P[N(x) = 1] > 1− ε(|x|)
x 6∈ L ⇒ P[N(x) = 1] < ε(|x|)

Exercise: By using Chernoff bounds, prove the following:

If ε(n) = 2−n
O(1)

, then BPPε = BPP

If ε(n) = n−O(1), then BPP 1
2
−ε = BPP
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Theory

Karp Reductions

Defined by Richard Manning Karp (1935–).

Reduce one combinatorial problem to another.

Definition (Karp reduction)

A Karp reduction of a language L1 to a language L2 is a poly-time
computable function f : {0, 1}∗ → {0, 1}∗, such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ f(x) ∈ L2 .

We write L1≤p L2 if there is a Karp reduction of L1 to L2.

Exercise 1: Show that if L1≤p L2 and L2≤p L3, then L1≤p L3.

Exercise 2: Show that if L2 ∈ P and L1≤p L2, then L1 ∈ P.

Exercise 3: Show that if L2 ∈ BPP and L1≤p L2, then L1 ∈ BPP.
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Theory

NP-Completeness and Cook-Levin Theorem

Stephen Cook (1939–) and Leonid Levin (1948–)
proved the existence of NP-complete problems.

Definition (NP-hardness, NP-completeness)

A language L is NP-hard, if L′≤p L for every L′ ∈ NP. If, in addition,
L ∈ NP, then L is said to be NP-complete.

Theorem (Cook, Levin, 1971)

Satisfiability (SAT) is NP-complete.

Exercise 1: Show that if L′≤p L and L′ is NP-complete, then L is
NP-hard.

Exercise 2: Show that if SAT≤p L and L ∈ NP, then L is NP-complete.
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Theory

Other NP-Complete Problems

In 1972, Richard Karp proved NP-completeness of 21 combinatorial
problems, including:

3-Colouring: Given a graph, decide whether the vertices can be coloured in
a way that no two adjacent vertices are of the same color.

Subset sum: Given a set (or multiset) of integers, decide if there is a
non-empty subset whose sum is zero.

Clique: Given a graph and an integer k, decide if there is a complete
subgraph with k vertices.
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Theory

P vs NP: The Holy Grail of Computer Science

John Edward Hopcroft (1939–), after a fierce debate at the
STOC 1971 conference, brought everyone to a consensus that
P = NP should be solved soon.

So far, it is one of the greatest unsolved problems of mathematics.

It is one of the seven Millennium Prize Problems: The Clay Mathematics
Institute offers 1 million USD reward for proving or disproving P = NP.

Most computer scientists believe that P 6= NP.
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Theory

Oracle Machines

Oracle is any function O : {0, 1}∗ → {0, 1}∗, not necessarily computable.

Definition (Oracle Machine MO)

A Turing machine that, in addition to ordinary configuration, has:

oracle tape with oracle cursor for read/write operations

oracle calls (can be executed at any state): for any x ∈ {0, 1}∗
written in the oracle tape, the contents of the oracle tape is instantly
replaced with O(x)

The number of oracle calls of MO does not exceed the running time t.
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Theory

Turing Reductions

Definition (Turing reduction)

A Turing reduction of a language L1 to a language L2 is a poly-time
oracle machine MO such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ 1←MO(x) ,

where O is the characteristic function of L2, i.e. for every z:

O(z) =

{
1 if z ∈ L2

0 if z 6∈ L2

We write L1≤T
p L2 if there is a Turing reduction of L1 to L2.
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Theory

Security and Proofs of Security

Breaking a cryptosystem is solving an instance of a search problem.

Practically Secure Cryptosystem: Too costly to break.

Proof of Practical Security: If the cryptosystem can be broken with cost
S, then a hard instance of a combinatorial problem can be solved with
cost S′.

Polynomially Secure Cryptosystem: Any efficient (poly-time) adversary has
negligible success probability.

Proof of Polynomial Security: A hard combinatorial problem can be
Turing-reduced to the problem of breaking the cryptosystem.

Polynomial security is of limited practical relevance, because real-life
cryptosystems tend to be fixed and finite.
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Practice

Practical Measures of Computational Costs and Security

Intuition: A cryptosystem is S-secure, if it cannot be broken with cost less
than S.

Engineers have to estimate the total cost of potential attacks, including:

Algorithm development

Coding

Hardware (memory, processors, etc.)

Energy

Total cost is computed from technical complexity, given the (monetary)
prices of computational resources.

Technical complexity itself must be price-independent.
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Time as a Measure of Technical Complexity

Computational time alone is not a good measure for technical complexity:

Theorem

For every function f : {0, 1}n → {0, 1}n (where n is constant) there is a
Turing machine M that computes the function in time t = 2n.

Proof.

The machine M has (n+ 1)2n states: a tree like structure of 2n − 1 of
states to encode the input x into one of 2n possible input value states.
Then for every such state we have a sequence of n states to write out the
output f(x) ∈ {0, 1}n, and the halt state. The machine needs n steps to
determine the input state and n steps to write out the output.

By such definition, no fixed one-way functions exist!
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Time + Code Size

Much more relevant complexity measure.

Can be converted to pure time-measure.

Assumption: adversaries have to load their program before the attack.

Under such assumption, program size converts to computational time.
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Time-Success Ratio

Attacks may succeed with certain probability.

Definition (S-security)

A primitive is S-secure if every adversary with running time t has success
probability δ ≤ t

S .

Equivalently:

Definition (S-security)

A primitive is S-secure if every adversary has time-success ratio t
δ ≥ S.
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Time-Success Ratio: Motivation

Time-success ratio t
δ is a natural measure of technical complexity.

Consider a there is a prize of P monetary units offered for breaking a
cryptosystem.

You know an attack A with running time t and success probability δ.

Under which conditions it is economically beneficial to take the challenge?

Let α denote the total cost of one computational step. Then:

the cost of the attack is αt

the average income is δP

Hence, the attack is beneficial if δP − αt > 0, i.e. if t
δ <

P
α , where P

α is
the prize expressed in computational-step units.

Hence, t
δ measures the cost in computational steps.

Ahto Buldas The Concept of Limited Adversaries Feb 21, 2020 46 / 48



Practice

Security Bits

Definition (Security bits)

A primitive has k bits of security iff it is S-secure, where log2 S ≥ k.

Usually, the time t is measured in block-cipher units.

1 block-cipher unit = time needed for the encryption of one block of data
with an ordinary block-cipher, or computing a hash of one block of data.
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Example: One-Way Functions

Let f : X → Y be a function.

Adversary is a probabilistic Turing Machine A that participates in the
following attack scenario:

1 An input x← X is chosen randomly.

2 The output y = f(x) is computed.

3 Given y as input, the adversary A computes x′ ← A(y).

4 Adversary is successful iff f(x′) = y.

Definition (S-secure One-Way Function)

A function f is S-secure one-way if every adversary A has time-success
ratio t

δ ≥ S.
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