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Model Checking (MC) problem: intuition

• Correct design means that the system under development must 
satisfy design requirements. The requirements are stated as 
correctness properties 

• Correctness properties state what behaviours/features are correct 
and what are not in the system.

• To apply rigorous verification methods formalization is needed:
• system description 
• correctness properties

• System is described formally with its model
• Properties are specified formally by assertions expressed in logic 
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Model Checking (formally)

• Satisfaction relation (symbolically):
M |= ϕ ?

“Does model M satisfy logic assertion ϕ ?”

• Behavioural properties ϕ are stated often in temporal logic.
• M is a state-transition system that models the behavior of the 

implementation to be verified.

Procedural definition:
• Model checking is a state space exploration method to determine if 

the state space of model M satisfies the property ϕ.

3



Why MC?

• MC is fully automatic
• Good for bug-hunting because the “debugger” i.e. model checker 

that does not require full execution of your program
• Traceability – the diagnostic trace (counter example) generated by 

model checker helps in analyzing and detecting the sources of design 
bugs.
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Modelling
Where the model M comes from?
1. Formal modelling 
 It is a process of abstraction
 It makes verification possible by retaining the part of the system that is 

relevant to modeling
 It should not discard too much so that the result lacks certainty, or 
 discard too little so that the verification is not feasible

2. Modelling techniques:
• “manual“ composition by applying model patterns, abstractions, domain 

knowledge,…
• automatic modelling by applying machine learning methods:

• state and/or IO monitoring and automata learning from these logs
• model extraction from code.
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Choosing the modelling formalism?

• We focus on state-transition systems. 
• They are

• generally acceptable by model checkers;
• represent finite set of states and transitions;
• push-down automata/systems are possible;
• also source programs can be used as models, e.g., Pathfinder for Java

code;
• abstract - symbolic encodings (logic formulae) specify abstract properties 

instead of explicit state behavior.
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Modelling notions 
• State

• We want to express what is true in a particular state
• A state is a “snapshot” of the system variables’ valuation(s), e.g.

• if a system is described by variables x, y, z then valuation x=2.4, y= 3.14, 
z=10 is one of its possible states.

• Transition represents relation between states. 
It can be an abstraction of
• C program statement, e.g. x++ transforming state where x=12 to a new 

state where x=13;
• an electronic circuit;
• or just an arrow, the source and destination states of which matter.
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Atomicity of state transitions

• Execution of a transition is atomic, i.e. uninterruptable once 
started.

• Atomicity determines the abstraction level of the model
• too big step may miss intermediate states that are important;
• too small step may blow up the model unnecessarily.

• Atomicity of transitions must also consider concurrency
• possible interleavings of transitions and interactions of parallel 

transitions systems must be explicit in the model.
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Kripke Structure (KS)
KS is one of the classic State Transition System models

4-tuple (S, S0, L, R) over a set of atomic propositions (AP) where
• S set of symbolic states (a symbolic state encodes a set of explicit states)
• S0 is an initial state
• L is a labeling function: S → 2AP

• R is the transition relation: R ⊆ S x S

Note:
L specifies what conditions the explicit states of a symbolic state have to 
satisfy.
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Example of KS

Assume the state vector consists of 2 state variables x and y

• Initially in s0 x=1 and y=1
• S = {s0, s1}
• S0 = {s0}
• R = {(s0, s1), (s1, s0)}
• L(s0) = {x=1, y=1}
• L(s1) = {x=0, y=1}
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s0 s1

x:= (x+y) mod 2

x:= (x+y) mod 2



Modeling Reactive Systems

• Reactive systems (RS) are STS that:
• do not terminate (in general);
• repeatedly interract with their environment.

• Consider KS as a simple modeling language for RS-s
• though KS is just one way of modeling RS.
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Some properties of RS to be verified

• Race condition - the output depends on the order of uncontrollable 
events. It becomes a bug when events do not happen in the order 
the programmer has intended, e.g. 

• in file systems, programs may be conflicting in their attempts to 
modify the file, which could result in data corruption;

• in networking, two users of different servers at different ends of the 
network try to start the same-named channel at the same time.

• Deadlock – all processes are infinitely waiting after each other for 
releasing the resources. Generally undecidable, practical decidability 
is granted only for finite state processes.

• Starvation - some processes are blocked from resources. 
• etc.
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Modeling Concurrent Programs with KS

How to construct KS from a (parallel) program?
Approach by by Manna, Pnueli:

1. Abstract the sequential components of the program as logic 
relations.

2. Compose the logic relations for the full concurrent program.

3. Compute a Kripke structure from these logic relations.

Let us look how it works on an example?
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Describing States

• For abstracting states we use program variables and 1st order 
predicate logic…

• In the logic we have
• true, false, ¬, ∧, ∨, ∀, ∃, ⇒
• equality “=” 
• interpreted predicate and function symbols:

• even(x)
• odd(x)
• prime(x)
…
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Example of state abstraction steps
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z=2;

y=1;

z=2;

y < z
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Representing States

• Valuation of a state
• A mapping: V → V from observable state variables V to their value

domain V.

• Symbolic state = set of explicit states
• Instead of enumerating explicit states we use a constraint that 

describes the set.
• This constraint is a 1st order logic formula.
• Example: Si ≡ (x =1) ∧ (y > 2)
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Representing a transition
• A transition abstracts a program command

• We need to distinguish two sets of variables’ values:
V and V’ for variable valuation in pre- and post-state of the transition,
respectively

• Transition relation is relation between V and V’
• relation is expressable as a set of pairs of states
• represented as a boolean equation on V, V ’

• Example:
• Relation x’ = x+1 describes the effect of program statement x:=x+1
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From Logic Relation to Kripke
Structure

Rules
• S (statespace) is the set of all valuations for V
• S0 is the set of all valuations that satisfy S0 (a logic formula)
• If s and s’ are two states, s.t. (s, s’) ∈ R(s, s’) then the pair (s, s’) is 

a transition in KS;
• L is defined so that L(s) is the subset of all atomic propositions true 

in s.
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Example

Explicit state KS:
• S0 = {(1,1)}
• R = {((1,1), (0,1)), ((0,1),(1,1))}
• L(1,1) = {x=1, y=1}
• L(0,1) = {x=0, y=1} 

• Symbolic state KS:
• S0≡ x = 1 ∧ y = 1
• R ≡ x’= (x+y) mod 2
• S = B × B, where B = {0,1}
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(1,1) (0,1)x:= (x+y) mod 2



Abstracting parallel programs to KS

• A parallel program contains sequential processes
• with synchronization primitives, e.g. wait, lock and unlock
• processes may share variables
• in untimed models there is no assumption about the speed and

execution order of these processes

• Program commands are labeled with   l1, … , ln

• We use C(l1, P, l2) to denote the logic relation of the 
transition that represents program P.
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How to compute the transition relation for
sequential components? (1)
• Base case: atomic commands:

• skip has no effect on data variables
• assignment: x := e

Let C describe valuations before and after executing program P:  
x:=e

C(l1, x:=e, l2) ≡ pc= l1∧ pc’=l2 ∧ x’= e ∧ same(V \{x})
where
same(Y) means y’= y, for all y ∈ Y.
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How to compute the transition relation for
sequential components? (2)

• Sequential composition
C(l0, P1 ; l: P2, l1) = C(l0, P1, l) ∨ C(l, P2, l1)

• If-command
C(l, if b then l1: P1 else l2: P2 end if, l’) =

pc = l ∧ pc’= l1 ∧ b ∧ same(V) ∨
pc = l ∧ pc’= l2 ∧ ¬ b ∧ same(V) ∨

C(l1, P1, l’) ∨
C(l2, P2, l’)
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part

Body part



How to compute logic relations for concurrent 
programs?
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L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’

• identify variables, including program counters;

• compute the set of states and set of initial states;

• compute transitions.

Example: concurrent while-loops sharing a variable “turn”



Example (continued I)
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Identify variables, including program counters:

• V = { pc_0, pc_1, turn}

• dom (pc_0) = { L0, NC0, CR0, L0’}

• dom(turn)= { 0, 1}

L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’



Example (continued II)

• Compute the set of states and set of initial states
• S = {(L0, L1, 1), (L0, L1, 0), (L0, NC1, 0), (L0, NC1, 1), …}
• S0 = {(L0, L1, 0), (L0, L1, 1)}
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L0: while (true) do

NC0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while (true) do

NC1:wait(turn=1);

CR1:turn:=0;

end while

L1’



Example (continued III)

L1: while (true) do
NC1: wait (turn 
=1);
CR1: turn := 0;
end while

L1’
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• Compute transition relations for processes separately 
• Concatenate state vectors and compose transition relations together:

• For global program counter dom(pc) = {m, m’, ⊥}
• ⊥ represents that one of the local processes is taking effect, which one 

we don’t care.

L0: while(true) do

C0:wait(turn=0);

CR0:turn:=1;

end while

L0’

m: cobegin

m’: coend



Example (continued IV)

• Transition relations of the composition: 
C( L0, P0, L0’) ≡ turn’= turn+1 ∧ same( V \ V0 ) ∧ same( PC \ PC0 )
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L0: while(true) do

C0:wait(turn=0);

CR0:turn:=1;

end while

L0’

L1: while(true) do

NC1:wait(turn=1);

CR1: turn := 0;

end while

L1’

m: cobegin

m’: coend



Summary

• We touched the concept of MC at very high level:
• MC is an automatic procedure that verifies temporal and state properties
• Requires input:

• a state transition system
• a temporal property

• State transition system – Kripke structure (KS):
• KS structure is our (teaching) modelling language
• KS models reactive systems

• An example demonstrated how a concurrent program is 
translated to KS:

• Step 1: Concurrent program is translated to logic relations 
• Srep 2: Logic relations are translated to KS.
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Next lecture

• Temporal properties description logics
• CTL*, CTL and LTL
• Their semantics

• CTL model checking algorithms on Kripke structure
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Exercise

• Give your explicit value definition to APs p, q, r.
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L(s0) = {¬ p, ¬ q, ¬ r}
L(s1) = {¬ p, ¬ q, r}
L(s2) = {¬ p, q, ¬ r}
L(s3) = {¬ p, q, r}
L(s4) = {p, ¬ q, ¬ r}
L(s5) = {p, ¬ q, r}
L(s6) = {p, q, ¬ r}
L(s7) = {p, q, r}

s7 s0 s3

s5 s4s6

s1 s2
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