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partial order is reflexive, anti–symmetric and transitive
binary relation on a set.

I.e. the relation ⩽ is a partial order on Z.

strict partial order is anti–reflexive partial order. It is a
binary relation which is anti–reflexive, anti–symmetric (and
hence also asymmetric), and transitive.

I.e. the relation < is a strict partial order on Z.



A set with a partial order on it is called a partially
ordered set or a poset.

I.e. (Z,⩽) is a poset. (P({a, b, c}),⊆) is a poset.

For elements a, b of a partially ordered set P, if a ⩽ b or
b ⩽ a, then a and b are comparable. Otherwise they are
incomparable.



Let us show that the relation ⩽ is a partial order on some
set A. It can be seen that for all a, b, c ∈ A, it holds that

a ⩽ a (reflexivity) ,

a ⩽ b ∧ b ⩽ a =⇒ a = b (anti–symmetry) ,

a ⩽ b ∧ b ⩽ c =⇒ a ⩽ c (transitivity) .

Similarly, < is a strict partial order on A.

¬(a < a) (anti–reflexivity) ,

a < b =⇒ ¬(b < a) (asymmetry) ,

a < b ∧ b < a︸ ︷︷ ︸
always false

=⇒ a = b anti–symmetry ,

a < b ∧ b < c =⇒ a < c (transitivity) .



For a set X with a partial order relation ⩽ on it, the
interval [a, b] is the set

[a, b] = {x ∈ X : a ⩽ x ⩽ b} .

Using the corresponding strict relation <, an open interval
(a, b) on X is the set

(a, b) = {x ∈ X : a < x < b} .

Half–open intervals [a, b) and (a, b] are defined similarly.



Let us show that divisibility (a < b ⇐⇒ a|b) is a partial
order relation on a set A.

Reflexivity: ∀x ∈ A : x|x.
Anti–symmetry: ∀x, y ∈ A : x|y ∧ y|x =⇒ x = y.
Transitivity: ∀x, y, z ∈ A : x|y ∧ y|z =⇒ x|z.

∃α, r ∈ A : y = αx + r ,

∃β, s ∈ A : z = βy + s ,

z = β(αx + r) + s = (βα)x + (βr + s) =⇒ x|z .



Definition 1 (Greatest Common Divisor)
Let A be a set. Let a, b ∈ A. The greatest common divisor
of a and b is an element d = gcd(a, b) such that d|a, d|b, and
any other common divisor c of a and b, divides d.

∀c ∈ A : c|a ∧ c|b =⇒ c|d .

W.r.t. this definition

gcd(4, 6) = 2 ,

gcd(4, 6) = −2 .



This definition of gcd is general, and allows us to calculate
the gcd of two polynomials. I.e.:

A = (x + 2)(x − 3)(x + 3) ,

B = (x + 2)(x + 3)(x − 5) .

It can be seen that the common divisors of A and B are:
(x+ 2), (x+ 3), (x+ 2)(x+ 3), and gcd(A,B) = (x+ 2)(x+ 3).

This common divisor is greatest in terms of divisibility
relation, which says a < b ⇔ a|b. Hence,

(x + 2) < (x + 2)(x + 3) because (x + 2)|(x + 2)(x + 3) ,

(x + 3) < (x + 2)(x + 3) because (x + 3)|(x + 2)(x + 3) .

Therefore gcd(A,B) = (x + 2)(x + 3).



The Hasse diagram of positive integers ordered by divisibility.



Let us show that ⊆ establishes a partial order on any set A.

A ⊆ A (reflexivity) ,

A ⊆ B ∧ B ⊆ A =⇒ A = B (anti–symmetry) ,

A ⊆ B ∧ B ⊆ C =⇒ A ⊆ C (transitivity) .

Similarly, ⊂ establishes a strict partial order on any set A.

¬(A ⊂ A) (anti–reflexivity) ,

A ⊂ B =⇒ ¬(B ⊂ A) (asymmetry) ,

A ⊂ B ⊂ C =⇒ A ⊂ C (transitivity) .

A ⊂ B ⊂ C =⇒ (x ∈ A =⇒ x ∈ B =⇒ x ∈ C) =⇒ A ⊂ C .



The Hasse diagram of sets ordered by the inclusion relation.



Consider the powerset P({0, 1}) = {∅, {1}, {2}, {1, 2}}.
Relation ⊂ is a strict partial order on P({0, 1}), i.e.

∅ ⊂ {0} , ∅ ⊂ {1} , {0} ⊂ {0, 1} {1} ⊂ {0, 1}

However, ⊂ is not a strict total order, since

{0} ⊄ {1} , {1} ⊄ {0} .

Elements {0} and {1} are not comparable by ⊂, and hence
the trichotomy property

∀a, b ∈ X : a < b ∨ b < a ∨ a = b

does not hold.



A total order (a.k.a. linear order or a chain) is connex
partial order. It is reflexive, anti–symmetric, transitive, and
connex.

In other words, a total order is a partial order under
which any two elements are comparable (connexity).

A strict total order is a trichotomous strict partial order.

In other words, a strict total order is a strict partial
order under which any two elements are either comparable
or equal (trichotomy).

A set with a total order on it is called a totally ordered
set.



(strict) well order is a (strict) total order in which any
non-empty subset has a least element.

A set with a well order relation on it is called a
well–ordered set.

Definition 2 (Well–ordering principle)
Every non-empty set of non-negative integers contains a
least element.

Corollary 1
The set of natural numbers N is well–ordered.



There are several kinds of extrema in a poset:
• Minimal / maximal element
• Least / greatest element
• Lower / upper bound
• Infimum / supremum

Let us take a look at the definitions of these elements, as
well as on some examples.



Let P be a set partially ordered by R. Let S ⊆ P.

Element m ∈ S is a minimal element of S if

∀x ∈ S : xRm =⇒ x = m .

Minimal element is an element that is not greater than
any other element in a set.

m is maximal element of S if

∀x ∈ S : mRx =⇒ m = x .

Maximal element is an element that is not smaller than
any other element in a set.



Let
S = {{d, o}, {d, o, g}, {g, o, a, d}, {o, a, f}}

be a set ordered by inclusion (⊆) relation.

A minimal element is an element that is not greater
than any other element in the set.

A maximal element is an element that is not less than
any other element in the set.

Considering the ⊆ relation,
• a minimal element is an element that is not a

superset of any other element in S.
• a maximal element is an element that is not a

subset of any other element in S.



Let
S = {{d, o}, {d, o, g}, {g, o, a, d}, {o, a, f}}

be a set ordered by inclusion (⊆) relation.

Element {d, o} is the minimal element, since the only
element s ∈ S such that s ⊆ {d, o} is {d, o} itself, it holds
that

{d, o} ⊆ {d, o} =⇒ {d, o} = {d, o} .

Element {g, o, a, d} is the maximal element, as the only
element s ∈ S such that {g, o, a, d} ⊆ s is {g, o, a, d} itself, it
holds that

{g, o, a, d} ⊆ {g, o, a, d} =⇒ {g, o, a, d} = {g, o, a, d} .



Let
S = {{d, o}, {d, o, g}, {g, o, a, d}, {o, a, f}}

be a set ordered by inclusion (⊆) relation.

Element {d, o, g} is neither minimal nor maximal, since

{d, o} ⊆ {d, o, g} ⊆ {d, a, o, g} .

Element {o, a, f} is both minimal and maximal, since
relation ⊆ contains only one pair of elements
({o, a, f}, {o, a, f}) ∈ ⊆ that binds {o, a, f} to itself, {o, a, f}
is the only subset and the only superset of iteself.

Hence, the minimal elements are {d, o} and {o, a, f} and the
maximal elements are {g, o, a, d} and {o, a, f}.



Minimal and maximal elements do not always exist.

Let S = [1,∞) ⊂ R. Assume m ∈ S is the maximal element.
But there exists element s = m + 1 ∈ S such that m ⩽ s
and m ̸= s. Hence, there is a minimal element 1 and no
maximal element in S.

Let S = {s ∈ Q : 1 ⩽ s2 ⩽ 2} and recall that s =
√

2 /∈ Q.



In general, ⩽ is a partial order on some set S. If m is a
maximal element of S and s ∈ S, there is a possibility that
neither m ⩽ s nor s ⩽ m. This leaves the possibility for the
existence of many maximal elements.

There may be many maximal and minimal elements.

In a fense a1 < b1 > a2 < b2 > . . . an < bn . . . (see the
image)

A fence consists of minimal and maximal elements only.

all ai are minimal, and all bi are maximal elements.



Let A be the set such that |A| ⩾ 2 and let

S = {{a} : a ∈ A} ⊂ P(A) .

partially ordered by ⊂.

The set S consists of singletons, which makes it a discrete
poset – no two elements are comparable. For all a′, a′′ ∈ A
such that a′ ̸= a it holds that

{a′} ∩ {a′′} = ∅ =⇒ {a′} ⊄ {a′′} ∧ {a′′} ⊄ {a′} .

And therefore, every element {a} ∈ S is maximal and
minimal.



Let P be a set partially ordered by R. Let S ⊆ P.

Element l ∈ S is the least element of S if

∀x ∈ S : lRx .

The least element is an element that is smaller than or
equal to any other element of S.

Element g ∈ S is the greatest element of S if

∀x ∈ S : xRg .

The greatest element is an element that is greater than
or equal to any other element of S.



The notions of maximal and minimal elements are weaker
than those of greatest element and least element.
Greatest and least elements are unique – a partially
ordered set may have several maximal and minimal
elements, but only one greatest and only one least element.
For totally ordered sets, the notions of maximal and
greatest element coincide, and the notions of minimal and
least elements coincide. They are called then maximum
and minimum.
In fields like analysis, which deals with totally ordered sets
only, the maximal, greatest, maximum are synonyms. The
same holds for minimal, least, minimum.
A finite chain always has a greatest and a least element.



Proposition 1
The greatest element is a unique maximal element.

Proof.
Let P be a set partially ordered by R. Let S ⊆ P. Let g be
the greatest element in S. We need to show that g is also a
maximal element.
Since g is greatest element, it holds that ∀s ∈ S : sRg. We
need to show that the implication ∀s ∈ S : gRs =⇒ g = s
holds. Indeed, it can be seen that by anti–symmetry of ⩽,
for all s ∈ S:

∀s ∈ S : sRg ∧ gRs =⇒ g = s .

To show uniqueness, suppose there is another maximal
element m such that gRm. By the definition of the greatest
element, mRg, which implies that m = g.



Corollary 2
If there exists a greatest element, there is one maximal
element, which is the greatest element itself.

Corollary 3
If there exists a least element, there is one minimal
element, which is the least element itself.

The converse is not true: there can be several maximal
elements with no greatest element.



Proposition 2
In a totally ordered set, the maximal element is the greatest
element.

Proof.
Let P be a set partially ordered by R. Let S ⊆ P. Let m be
the maximal element in S. By connexity, for all s ∈ S either
sRm or mRs. The condition sRm does not contradict with
m being the greatest element in S. If mRs, by definition of
a maximal element mRs =⇒ m = s. So we conclude that
for all s ∈ S : sRm, and hence m is the greatest element in
S.



Corollary 4
In a totally ordered set, the notions of the maximal element
and the greatest element coincide, same as the notions of
minimal element and a least element.

Proof.
The proof is a direct consequence of propositions 1 and
2.



Let
S = {{d, o}, {d, o, g}, {g, o, a, d}, {o, a, f}}

be a set ordered by inclusion (⊆) relation.

There are no greatest nor least elements in S.



The powerset of {x, y, z} ordered by ⊂.

∅ is the only minimal and least element of P({x, y, z}).

{x, y, z} is the only maximal and the greatest element of
P({x, y, z}).



The least and greatest element of a partially ordered set
play a special role and are also called bottom and top,
zero (0) and unit (1), ⊤ and ⊥.

If both exist, a poset is called a bounded poset.

In set theory, a set is finite iff every non-empty family of
subsets has a minimal element when ordered by the
inclusion (⊆) relation.



Let P be a set partially ordered by R. Let S ⊆ P.

Element λ ∈ P is an upper bound of S if

∀x ∈ S : xRλ .

An upper bound of a subset S of a poset P is an element
λ ∈ P that is greater than or equal to every other element
of S.

Corollary 5
The greatest element of S ⊂ P (if it exists) is an upper
bound of S.

Corollary 6
There may be many upper bounds.



Let P be a set partially ordered by R. Let S ⊆ P.

Element λ ∈ P is a lower bound of S if

∀x ∈ S : λRx .

A lower bound of a subset S of a poset P is an element
λ ∈ P that is less than or equal to every other element of S.

Corollary 7
The least element of S ⊂ P (if it exists) is a lower bound of
S.

Corollary 8
There may be many lower bounds.



A poset with an upper bound is said to be bounded from
above by that bound.

A poset with a lower bound is said to be bounded from
below by that bound.

A poset is bounded if it has upper or lower bounds.

On the contrary, a poset without any bounds is called
unbounded.



I.e., 5 is the lower bound of the set
{5, 8, 42, 34, 13934} ⊂ N. So is 4, so is 1, but 6 is not.

The set {42} ⊂ R is both an upper and lower bound, all
other real numbers are either an upper bound or a lower
bound of that set.

Every subset of N has a lower bound, since every such
subset has a least element by the well–ordering principle.

An infinite subset of N cannot be bounded from above.



A proper infinite subset of Z can be bounded from below,
or from above, but not from both sides.

An infinite subset of Q may or may not be bounded from
below, and may or may not be bounded from above.

Every finite subset of a non–empty totally ordered set has
both upper and lower bounds.



Let P be a set partially ordered by R. Let S ⊆ P.

An upper bound I of S is a supremum (sup S) if I is the
least upper bound.

∀U ∈ P : IRU .

A lower bound I of S is an infimum (inf S) if I is the
greatest lower bound.

∀U ∈ P : URI .

An infimum is the greatest lower bound.
A supremum is the least upper bound.





If a poset has the greatest element, it is one of its upper
bounds. If a poset has upper bounds, the greatest element
may not exist.

Consider the set of negative real numbers
R− = [−∞, 0) ⊂ R. Any x ∈ [0,∞) is an upper bound of
R−, but thre is no greatest element. Element 0 is a
supremum (least upper bound) of R−, but the existence of
a supremum also does not imply the existence of the
greatest element.

Similarly, if a poset has the least element, it is one of its
lower bounds, but the existence of an infimum or lower
bounds does not imply the existence of a least element.



If sup S exists, it is unique (by the uniqueness of the least
element).

If S contains the greatest element g, then g = sup S,
otherwise sup S /∈ S or does not exist.

The existence of supS may fail if the set has no upper
bounds, or the set of upper bounds does not have the least
element.



If inf S exists, it is unique (by the uniqueness of the
greatest element).

If S contains the least element l, then l = inf S, otherwise
inf S /∈ S or does not exist.

Existence of inf S may fail if the set has no lower bounds, or
the set of lower bounds does not have the greatest element.



Finally, the concepts of minimal and least w.r.t. bounds
also holds. There can be many minimal upper bounds with
no least upper bound (supremum). Similarly, there may be
many maximal lower bounds with no greatest lower bound
(infimum).

The distinction between ”minimal” and ”least” is only
possible when the given order is not a total order. In totally
ordered sets, these terms mean exactly the same thing.




