

Real-time Operating Systems and
Systems Programming

IO, Interrupts, Getting to know hardware
Lecture 4

1 year 32 nHz year number rollover
6 months 64nHz GMT ↔ BST changeover
8hr 30μHz AGA coal stove sycle time
10s 0.1Hz photocopier page printing
1s 1Hz time-of-day rate
300ms 3Hz human typing speed
300ms human reaction time
150ms 7Hz mechanical switch bounce time
15ms 70Hz motor car engine speed

260Hz middle C
440Hz concert pitch A

1ms 1kHz serial line data rate
125μs 8kHz digitized speech, telephone quality
64μs 15.6kHz TV line rate
50μs Mc68000 interrupt latency
0.5μz 2Mhz Mc68000 instruction rate
0.075μs 13.5MHz Video data rate
0.050μs semiconductor RAM access time
0.01μs 100MHz Ethernet data rate
10ns 100MHz memory cycle, PC motherboard
2.5ns 400MHz logic gate delay
555ps 1.8GHz cellular telephone transmission
500ps 2GHz single instruction issue, Pentium IV
0.3ps 3THz infrared radiation
16fs 600THz visible light

Operating systems

● Interface between hardware and software
● Provide services for applications
● Provide an abstraction layer for hardware

What services?

● Processes
● Multitasking
● Interrupts
● Memory management

● Virtual memory

● Protected/supervisor
mode

● Disk & Files

● Booting the computer
● Device drivers
● Networking
● Users / authentication
● Graphical UI

What applies for Real-time?

Usually not included in RTOS

● Paged & swappable virtual memory
management

● Disk filing system
● Full networking facilities
● Intertask security
● Multi-user support
● GUI

More power (and responsibility)

● Interrupts can be masked
● Can be used only if max. int. latency (by

specification) longer than longest critical section
path

● Memory allocation
● Fixed-size blocks
● Re-entrant core libraries (allocation on stack)

Other services

● HW initialization
● Real-time clock

management
● Critical resource

protection
● Intertask

communication
● Intertask

synchronization

● I/O management
● Multiple interrupt

servicing
● Memory allocation

and recovery
● Assistance for

debugging

POSIX

● POSIX (Portable Operating System Interface
[for UniX])

● Standard for Unix, defines core specifications-
command-line, shell, some programs, basic
IO.Threading API.

Posix IO

● Program has two inputs:
● Command line arguments to main()
● Standard input (keyboard connected to file by

default)

● Two outputs
● Standard output (connected to terminal by default)
● Standard error (connecterd to terminal by default)

● Standard streams can be redirected

Dealing with standard streams

● Redirection done by piping
● ./myprogram < inputfile > outputfile
● ls > outputfile.txt
● ls | more

● Ending keyboard input:
● Pressing Ctrl + D on terminal signals EOF (^D)

Hardware

I/O for RT Systems

● Can be complex
● Desktop computing hides the fact successfully

● Need to understand
● Port address mappings
● Register functionalities

Hardware access

● Done by accessing HW ports & registers
● Memory mapped
● I/O mapped

Memory mapped

● I/O registers behave like memory locations

IO Mapped

● More bus control lines, extra instructions
● Independent address space for I/O ports
● Intel (IN & OUT instructions)
● Better caching: we need to read “raw data” for

I/O
● C lang extensions: inb() outb() functions.

Comparison

Programmers view of ports

● For direct I/O:
● Base address of I/O chip
● Memory map and function of its registers

Need to Identify:
Command
Status
Data

PC I/O mapped port addresses

Port polling

● Poll until data arrives
● Problem: CPU fast, devices slow
● Dedicated (spin) vs intermittent (timed) polling

How Unix solves the problem?

● The analogous problem being “how to read files
without the program being blocked”.

Blocking & nonblocking

● IO operations wait until complete: blocking
● Simple: read only when data waiting (kbhit() -

DOS/Win)
● Possible to turn off blocking & buffering for

keyboard
● fd = open(“/dev/ttyS0”, O_RDWR | O_NOCTTY

| O_NONBLOCK);
● Ioctl() & fcntl()

Blocking

● Device blocking often necessary for fair
scheduling

● Threading possible
● select() function for multiple sockets.

I/O access permissions

● Accessing data belonging to another task
● Accessing kernel information
● Both need root permissions
● Solution: Setuid mechanism

● passwd ps etc

Interrupts

● Interrupt method good for occasional attention
● Requires hardware support, quite common

CPU level

● On every instruction, interrupt line is checked
● On interrupt, selected service routine executed

after saving the instruction pointer
● Gets restored afterwards.
● Response in 10μs

System diagram

Extension: Exception processing

● Exception: Interrupt may be generated
internally
● CPU error condition
● Memory access violation

● TRAP instructions from software

Source detection

● Often only one interrupt line
● How to find the source?

Polling

● Slow since all devices must be polled
individually

● Does not require extra hardware
● Adequate for small number of devices

Vector interrupts

● Interrupt Vector Registers (IVR) in devices
● Motorola Mc68000 family

PIC interrupts

● Needs Programmable Interrupt Controller (PIC)
● PC method. Centralized prioritizing encoder.

Actions

● Interrupt
● CPU saves program counter (PC) & CPU

status register to stack
● Entry address for Inter. Service Routine (ISR)

from Interrupt Vector Table (IVT), written to PC
● ISR starts

ISR

● Store register contents to stack
● Verify source (test device flag for example)
● Remove cause to prevent further interruption
● Reinitialize device?
● …
● POP saved registers from stack, RTE

instruction to restore Instruction Pointer &
status

PC interrupt structure

● PIC lets through a single IRQ from most urgent
device

● Interrupts can be disabled with STI & CLI instr.
● Source: PIC sends 8-bit vector to IVT which

stores ISR-s
● IRQ 0 highest, IRQ 15 lowest

PC interrupts

● IRQ0 – system timer for ticks
● IRQ1 – keyboard
● IRQ2 – cascaded second PIC for IRQ8-15
● IRQ3 – COM2 port, often for modems
● IRQ4 – COM1/mouse
● IRQ5 – LPT2, often soundcard
● IRQ6 – floppy
● IRQ7 – LPT1

Interrupt priorities

● How to handle simultaneous interrupts
● Priorities handled in hardware
● Alternative: Deferred interrupt processing
● ISRs split in two. Small immediate service code

and larger deferred portion.
● Queues for later processing
● Used on Windows

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

