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Division
For any m > 0, we define Z,, = {0,1,...m — 1}
For any n,m € Z (m > 0), there are unique ¢ € Z and r € Z,, such that:
n=qgm+r ,
where 7 is called the remainder (of n modulo m) and is denoted by

r=mn modm .

If » = 0, we say that m divides n (or n is divisible by m) and write m | n.
fO<n<m,thenr =n;ifm<n<2m, thenr =n—m € Z,,, etc.

If —m <n<0, thenr=n+m;if —2m <n < —m, then r = n + 2m,
etc.
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Equivalence of Numbers modulo m

If @ mod m =b mod m (i.e. ifa—b=kmforak€Z, orm|(a—>b)),

then we write
a=b (modm) ,

and say that a and b are equivalent modulo m.

For example —1 =2 (mod 3), 7=1 (mod 3), 2 =12 (mod 5), etc.
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Loy, as @ Number Domain

We can define addition and multiplication in Z,, denoted by & ja ® in the

next way:

a®b = (a+b) modm ,
a®b = (a-b) mod m.

For example, in Zs:

202=2®2=1, 142=0,

and in Zs:

2063=0, 3#3=1=3®2 and 3®4=2.

Ahto Buldas Elementary Number Theory September 9, 2019

4/1
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Properties of the Function mod m: Z — 7Z,,

omodm is a projector. (a mod m) mod m = a mod m.
o mod m preserves the operations (i.e. is a homomorphism):

If @’ = a mod m, ¥ = b mod m ja ¢ = ¢ mod m, then

a+b=c = dbt=~—
a-b=c = dob=c.

Conclusion 1: When computing

a+b-(c+d-(e+f))... modm

we can reduce mod m whenever we want.

Conclusion 2: @ and ® are somewhat similar to ordinary + and -
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Properties of the Z,, Number Domain

Though @ and ® differ from 4 and -, we mostly use + and - if this will

not cause confusion.

The following properties hold in Z,:

o Commutativity: a+b=b+a, a-b=0b-a

@ Associativity: (a+0b)+c=a+ (b+ c),

@ Zero:a+0=0+a=a, a-0=0-a=0
°

°

Unit:a-1=1-a=a

Distributivity: (a+0b)-c=a-c+b-c,

Ahto Buldas

Elementary Number Theory

(a-b)-c=a-(b-c)

September 9, 2019

6/1



Somewhat Unusual Properties of Z,,

o The inverse —a of an element a € Z,, is m — a € Z,,, because:

a+(m—a)=m=0 (modm) .

o Zero divisors: the product of two non-zero elements can be zero. For

example, in Zg:
2:3=0 (mod 6) .

o Not every element a has an inverse a™' in Z,,:

a-a'=1 (modm) .

For example, zero divisors never have inverses.
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Motivation from Cryptography

In cryptography, the operations should be invertible, because any
encrypted message should later be decrypted.

Both mod addition and multiplication are extensively used in cryptography.

Modular addition & is invertible, i.e. a & x = b is always solvable.

Modular multiplication ® is not always invertible, i.e. a ® x = b can be
unsolvable.

For example, 2 -2 =5 (mod 6) is not solvable.

The equation 2- 2 =5 (mod 7) is solvable: = 6, because

2:6=12=5 (mod?7) .
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Greatest Common Divisor

By the greatest common divisor ged(a, b) of two non-negative numbers a
and b (not both zero!) we mean the largest d that divides both numbers,

i.e.
ged(a,b) = max{d: d|a and d | b} .
Theorem
An element a € Z,, is invertible if and only if gcd(a,m) = 1. }
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Computing ged(a, b): Euclid’'s Algorithm

Fora >b>0:

a ifb=0
ged(a,b) = { ged(b,a mod b) if b#0 (1)

The work of Euclid’s algorithm can be represented as a sequence:
ged(ro, ) = ged(ry, o) = ... = ged(rm—1,7m) = ged(rm, 0)

where ro = a, r1 = b, and 141 = rx_1 mod 1, < 7y for any k > 1.

This algorithm stops (an m with 7,11 = 0 exist), because otherwise
ro>rL>re> . . > > ...

is an infinite decreasing sequence of natural numbers, which does not exist.
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Correctness of Euclid's Algorithm

Clearly ged(a,0) = a. We prove ged(a,b) = ged(b,amod b), if a > b > 0.

If Dyp ={d: d|aandd|b} is the set of all common divisors of a and b:
ged(a,b) =max Dy, and  ged(b,a mod b) = max Dy 4 mod b -

It is sufficient to prove that D, = Dy gmod - This is indeed the case, as:
olfd|ajad]|b, thend| (amod b) = a— kb, and hence Dy, C Dy qmod b

olf d| (amod b) and d | b, then also d | a, because a = (amod b) + kb,
and hence D j 2 Dp gmod b-
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Efficiency of Euclid’'s Algorithm

Theorem
Euclid’s algorithm finds gcd(a, b) using 1.44 - log, b+ 1 divisions. J

Let ro > 71 > ...1y—1 > 7, be the sequence produced by Euclid’s
algorithm so that r, = gcd(a,b). Let ¢ = 1‘5—‘/5 ie. 1+¢1=¢ We
show by induction that r; > qb"*k forl1<k<m,ie b=r > qb"*1.

As 141 =11 mod ry = r_1 — qxTk, We have rp_1 = qpTg + TR,
where ¢ > 1 because of r_1 > 7.

Basis: rp, = ged(a,b) > 1=¢% As 7,1 =0 and ¢, = 11 > 7, We
have ¢, > 2 and hence r,_1 > 2 > ¢l

Step: If rpp1 > ¢"* 1L and r, > ¢" %, then
rE_q = rik+rk+1 Z Tk+7"k+1 — ¢n7k71+¢n7k _ ¢n7k(1+¢71) — ¢n*k+1
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Conclusions

Conclusion 1: If a > b > 0, then there exist «, 8 € Z such that
ged(a,b) = aa + (b .
Conclusion 2: ged(a,b) = 1 if and only if Ja, 5 € Z, such that
aa+ pb=1 .
Proof: If ged(a,b) = 1, then use Conclusion 1. If 3a, 8 € Z such that
aa+pBb=1, (2)

d|aandd|b, thend| 1 by (2),ie. ged(a,b) =1.
Conclusion 3: If ged(a,m) = 1, then 3b € Z,,, such that b-amod m = 1.

Proof: Given a, 8 € Z, so that aa + fm = 1, define b = a mod m.
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Finding Inverses with Euclid's Algorithm

Find 3 mod 26. Let a =3 and b = 26.

3|26 a b

3| 2 a b—8a

112 |a—(b—-8)=9a—b b—8a

110 9a —b b—8a—2(9a — b) = —26a + 3b

Hence, 9-3 — 26 = 1, which means 9-3 =1 (mod 26)
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Solvability of ax mod n = ¢

Theorem

The equation ax mod n = ¢ (where ¢ € Zy,) is solvable iff gcd(a,n) | c.

Proof.
If the equation is solvable and d = gcd(a,n), then 3a’,n', k € Z so that
a =ad'd, n =n'd, and hence d | ¢, because:

c=ar modn=axr—kn=ddr—kn'd=(dx—kn')d .

If d =gcd(a,n) | ¢, then gcd(d, %) = 1, which means that § has inverse

modulo and the equation dac mod % = g is solvable, i.e. Ik € Z:

a c
gm‘—kzg R and hence ax — kn=c€ Z,, ,

which means that ax mod n O

v
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How Many Invertible Elements mod m are there?

Answer to that question is called the Euler’s function p(m).
Computing ¢(m) requires the prime-factorization of m.

A prime number is a number if it has exactly two divisors. For example: 2,
3,5, 7,11, 13, etc.

Theorem (Fundamental Theorem of Arithmetics)

Every integer m > 0 has a unique prime factorization:
prpy

where p1 < p2 < ... < py are prime numbers.

For example: 60 = 22 .3 . 5%
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Some Lemmas

Lemma 1: Every composite m > 2 is a product of primes.

Proof: Let m be the smallest composite number that is not a product of
primes. Hence, there exist composite numbers my,mg < m, so that

m = m - mo. Hence, mq and msy are products of primes and so must be
m. A contradiction.

Lemma 2: If ged(aq,b) =1 = ged(ag, b), then ged(aq - ag,b) = 1.
Proof: As there are aq, 81, o, B2, so that ajaq + S1b = 1 = asas + Bob:

1 = (av1a1 + p1b) (cag + B2b) = a1 -aras + (1 + ararf2) -b
1 1 a 3

we have ged(ajag, b) = 1.
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Fundamental Theorem of Arithmetics: Proof

Theorem

Every composite m > 2 has a unique prime-factorization p1 - p2 - ... - Dk,
where p1 < ps <... < py.

Proof.

Let m be the smallest number that has two different prime-factorisations:

pip2...Pk =M =4q1q2...4¢ .

Hence, p; # g;, because otherwise m’ = m/p; < m also has two different
factorizations. Thus, ged(p1,q1) = ged(p2,q1) = ... = ged(pr, q1) = 1,
which by the assumption ¢; | m and Lemma 2 implies a contradiction:

q1 = ged(m, q1) = ged(pip2 - - - pr,q1) =1 .

D)
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Computing the Euler's Function

Theorem
If m=p{*-pS?-...-pi* is the prime decomposition, then
(m) — er _ e1i—1Y) [ e  _ea—1) ek ekl
02 = (P1 P Dy” — P o \Pp T Py

— o (D))

The proof uses the inclusion-exclusion principle from counting theory.
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Inclusion-Exclusion Principle

Let P,..., P, be subsets of a set M. We want to count those elements
of M that belong to none of P, i.e. we want to compute |M\ U, P, |.

If k=1, then | M\ U, P,|=|M| — |P|.
If & =2, then | M\ U, P, |=|M| — |P1| — |P2| + |P1 N Py
If £ =3, then:

| M\ Un | = [M| = |P1| — |P2| — |P3|
+’P1ﬂP2’+’P10P3’+’P2ﬂP3’—|P1ﬂP2ﬂP3‘ .

General case: | M\ U, P, |=|M| =31 + 39 — X3+ ...+ (=1)i%; +....

-----

set ¢(i) of all i-combinations of indices 1,2, ..., k. There are (l:) of them.
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Inclusion-Exclusion Principle and Euler's function

Let M = Zy,, where m = p* - p5? - ... - p*. Let P, be the set of elements
in Zp, divisible by p,,. Then p(m) =|M\ U,, P, |

This is because a € Z,, is invertible iff none of p1,...px divides a.

and hence:
m m m m m
em) = m———...——+ —+ ...+ — — ...
b1 P P1p2 Pk—1Pk  P1P2P3

S (o N (B B (R
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