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Division

For any m > 0, we define Zm = {0, 1, . . .m− 1}

For any n,m ∈ Z (m > 0), there are unique q ∈ Z and r ∈ Zm such that:

n = qm+ r ,

where r is called the remainder (of n modulo m) and is denoted by

r = n mod m .

If r = 0, we say that m divides n (or n is divisible by m) and write m | n.

If 0 ≤ n < m, then r = n; if m ≤ n < 2m, then r = n−m ∈ Zm, etc.

If −m ≤ n < 0, then r = n+m; if −2m ≤ n < −m, then r = n+ 2m,
etc.
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Equivalence of Numbers modulo m

If a mod m = b mod m (i.e. if a− b = km for a k ∈ Z, or m | (a− b)),
then we write

a ≡ b (mod m) ,

and say that a and b are equivalent modulo m.

For example −1 ≡ 2 (mod 3), 7 ≡ 1 (mod 3), 2 ≡ 12 (mod 5), etc.
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Zm as a Number Domain

We can define addition and multiplication in Zm denoted by ⊕ ja ⊗ in the
next way:

a⊕ b = (a+ b) mod m ,

a⊗ b = (a · b) mod m.

For example, in Z3:

2⊕ 2 = 2⊗ 2 = 1, 1⊕ 2 = 0 ,

and in Z5:

2⊕ 3 = 0, 3⊕ 3 = 1 = 3⊗ 2 and 3⊗ 4 = 2 .
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Properties of the Function mod m : Z→ Zm

◦ modm is a projector: (a mod m) mod m = a mod m.

◦ modm preserves the operations (i.e. is a homomorphism):

If a′ = a mod m, b′ = b mod m ja c′ = c mod m, then

a+ b = c =⇒ a′ ⊕ b′ = c′

a · b = c =⇒ a′ ⊗ b′ = c′ .

Conclusion 1: When computing

a+ b · (c+ d · (e+ f)) . . . mod m

we can reduce modm whenever we want.

Conclusion 2: ⊕ and ⊗ are somewhat similar to ordinary + and ·
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Properties of the Zm Number Domain

Though ⊕ and ⊗ differ from + and ·, we mostly use + and · if this will
not cause confusion.

The following properties hold in Zm:

Commutativity: a+ b = b+ a, a · b = b · a
Associativity: (a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c)
Zero: a+ 0 = 0 + a = a, a · 0 = 0 · a = 0

Unit: a · 1 = 1 · a = a

Distributivity: (a+ b) · c = a · c+ b · c,
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Somewhat Unusual Properties of Zm

◦ The inverse −a of an element a ∈ Zm is m− a ∈ Zm, because:

a+ (m− a) = m ≡ 0 (mod m) .

◦ Zero divisors: the product of two non-zero elements can be zero. For

example, in Z6:
2 · 3 ≡ 0 (mod 6) .

◦ Not every element a has an inverse a−1 in Zm:

a · a−1 ≡ 1 (mod m) .

For example, zero divisors never have inverses.
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Motivation from Cryptography

In cryptography, the operations should be invertible, because any
encrypted message should later be decrypted.

Both mod addition and multiplication are extensively used in cryptography.

Modular addition ⊕ is invertible, i.e. a⊕ x = b is always solvable.

Modular multiplication ⊗ is not always invertible, i.e. a⊗ x = b can be
unsolvable.

For example, 2 · x ≡ 5 (mod 6) is not solvable.

The equation 2 · x ≡ 5 (mod 7) is solvable: x = 6, because

2 · 6 = 12 ≡ 5 (mod 7) .
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Greatest Common Divisor

By the greatest common divisor gcd(a, b) of two non-negative numbers a
and b (not both zero!) we mean the largest d that divides both numbers,
i.e.:

gcd(a, b) = max{d : d | a and d | b} .

Theorem

An element a ∈ Zm is invertible if and only if gcd(a,m) = 1.
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Computing gcd(a, b): Euclid’s Algorithm

For a > b ≥ 0:

gcd(a, b) =

{
a if b = 0
gcd(b, a mod b) if b 6= 0

(1)

The work of Euclid’s algorithm can be represented as a sequence:

gcd(r0, r1) = gcd(r1, r2) = . . . = gcd(rm−1, rm) = gcd(rm, 0) ,

where r0 = a, r1 = b, and rk+1 = rk−1 mod rk < rk for any k > 1.

This algorithm stops (an m with rm+1 = 0 exist), because otherwise

r0 > r1 > r2 > . . . > rk > . . .

is an infinite decreasing sequence of natural numbers, which does not exist.
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Correctness of Euclid’s Algorithm

Clearly gcd(a, 0) = a. We prove gcd(a, b) = gcd(b, amod b), if a > b > 0.

If Da,b = {d : d | a and d | b} is the set of all common divisors of a and b:

gcd(a, b) = maxDa,b and gcd(b, a mod b) = maxDb,a mod b .

It is sufficient to prove that Da,b = Db,amod b. This is indeed the case, as:

◦ If d | a ja d | b, then d | (amod b) = a− kb, and hence Da,b ⊆ Db,amod b

◦ If d | (amod b) and d | b, then also d | a, because a = (amod b) + kb,

and hence Da,b ⊇ Db,amod b.
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Efficiency of Euclid’s Algorithm

Theorem

Euclid’s algorithm finds gcd(a, b) using 1.44 · log2 b+ 1 divisions.

Let r0 > r1 > . . . rn−1 > rn be the sequence produced by Euclid’s

algorithm so that rn = gcd(a, b). Let φ = 1+
√
5

2 , i.e. 1 + φ−1 = φ. We
show by induction that rk ≥ φn−k for 1 ≤ k ≤ m, i.e. b = r1 ≥ φn−1.

As rk+1 = rk−1 mod rk = rk−1 − qkrk, we have rk−1 = qkrk + rk+1,
where qk ≥ 1 because of rk−1 > rk.

Basis: rn = gcd(a, b) ≥ 1 = φ0. As rn+1 = 0 and qnrn = rn−1 > rn, we
have qn ≥ 2 and hence rn−1 ≥ 2 > φ1.

Step: If rk+1 ≥ φn−k−1 and rk ≥ φn−k, then

rk−1 = qkrk+rk+1 ≥ rk+rk+1 = φn−k−1+φn−k = φn−k(1+φ−1) = φn−k+1 .
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Conclusions

Conclusion 1: If a > b ≥ 0, then there exist α, β ∈ Z such that

gcd(a, b) = αa+ βb .

Conclusion 2: gcd(a, b) = 1 if and only if ∃α, β ∈ Z, such that

αa+ βb = 1 .

Proof: If gcd(a, b) = 1, then use Conclusion 1. If ∃α, β ∈ Z such that

αa+ βb = 1 , (2)

d | a and d | b, then d | 1 by (2), i.e. gcd(a, b) = 1.

Conclusion 3: If gcd(a,m) = 1, then ∃b ∈ Zm, such that b · amod m = 1.

Proof: Given α, β ∈ Z, so that αa+ βm = 1, define b = α mod m.
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Finding Inverses with Euclid’s Algorithm

Find 1
3 mod 26. Let a = 3 and b = 26.

3 26 a b

3 2 a b− 8a
1 2 a− (b− 8a) = 9a− b b− 8a
1 0 9a− b b− 8a− 2(9a− b) = −26a+ 3b

Hence, 9 · 3− 26 = 1, which means 9 · 3 ≡ 1 (mod 26)
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Solvability of ax mod n = c

Theorem

The equation ax mod n = c (where c ∈ Zn) is solvable iff gcd(a, n) | c.

Proof.

If the equation is solvable and d = gcd(a, n), then ∃a′, n′, k ∈ Z so that
a = a′d, n = n′d, and hence d | c, because:

c = ax mod n = ax− kn = a′dx− kn′d = (a′x− kn′)d .

If d = gcd(a, n) | c, then gcd(ad ,
n
d ) = 1, which means that a

d has inverse
modulo n

d and the equation a
dx mod n

d = c
d is solvable, i.e. ∃k ∈ Z:

a

d
x− kn

d
=
c

d
, and hence ax− kn = c ∈ Zn ,

which means that ax mod n = c.

Ahto Buldas Elementary Number Theory September 9, 2019 15 / 1



How Many Invertible Elements mod m are there?

Answer to that question is called the Euler’s function ϕ(m).

Computing ϕ(m) requires the prime-factorization of m.

A prime number is a number if it has exactly two divisors. For example: 2,
3, 5, 7, 11, 13, etc.

Theorem (Fundamental Theorem of Arithmetics)

Every integer m > 0 has a unique prime factorization:

pe11 · p
e2
2 · . . . · p

ek
k ,

where p1 < p2 < . . . < pk are prime numbers.

For example: 60 = 22 · 31 · 51.
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Some Lemmas

Lemma 1: Every composite m ≥ 2 is a product of primes.
Proof: Let m be the smallest composite number that is not a product of
primes. Hence, there exist composite numbers m1,m2 < m, so that
m = m1 ·m2. Hence, m1 and m2 are products of primes and so must be
m. A contradiction.

Lemma 2: If gcd(a1, b) = 1 = gcd(a2, b), then gcd(a1 · a2, b) = 1.
Proof: As there are α1, β1, α2, β2, so that α1a1 + β1b = 1 = α2a2 + β2b:

1 = (α1a1 + β1b)︸ ︷︷ ︸
1

(α2a2 + β2b)︸ ︷︷ ︸
1

= α1α2︸ ︷︷ ︸
α

·a1a2 + (β1 + α1a1β2)︸ ︷︷ ︸
β

·b ,

we have gcd(a1a2, b) = 1.
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Fundamental Theorem of Arithmetics: Proof

Theorem

Every composite m ≥ 2 has a unique prime-factorization p1 · p2 · . . . · pk,
where p1 ≤ p2 ≤ . . . ≤ pk.

Proof.

Let m be the smallest number that has two different prime-factorisations:

p1p2 . . . pk = m = q1q2 . . . q` .

Hence, pi 6= qj , because otherwise m′ = m/pi < m also has two different
factorizations. Thus, gcd(p1, q1) = gcd(p2, q1) = . . . = gcd(pk, q1) = 1,
which by the assumption q1 | m and Lemma 2 implies a contradiction:

q1 = gcd(m, q1) = gcd(p1p2 · . . . · pk, q1) = 1 .
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Computing the Euler’s Function

Theorem

If m = pe11 · p
e2
2 · . . . · p

ek
k is the prime decomposition, then

ϕ(m) =
(
pe11 − p

e1−1
1

)
·
(
pe22 − p

e2−1
2

)
· . . . ·

(
pekk − p

ek−1
k

)
= m ·

(
1− 1

p1

)
·
(

1− 1

p2

)
· . . . ·

(
1− 1

pk

)
.

The proof uses the inclusion-exclusion principle from counting theory.
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Inclusion-Exclusion Principle

Let P1, . . . , Pk be subsets of a set M . We want to count those elements
of M that belong to none of Pn, i.e. we want to compute |M\ ∪n Pn |.

If k = 1, then |M\ ∪n Pn |=|M| − |P1|.
If k = 2, then |M\ ∪n Pn |=|M| − |P1| − |P2| + |P1 ∩ P2|.
If k = 3, then:

|M\ ∪n Pn | = |M| − |P1| − |P2| − |P3|
+ |P1 ∩ P2| + |P1 ∩ P3| + |P2 ∩ P3| − |P1 ∩ P2 ∩ P3| .

General case: |M\ ∪n Pn |=|M| −Σ1 + Σ2 − Σ3 + . . .+ (−1)iΣi + . . ..

where Σi =
∑

(j1,...,ji)∈c(i) |Pj1 ∩ . . . ∩ Pji| and the summation is over the

set c(i) of all i-combinations of indices 1, 2, . . . , k. There are
(
k
i

)
of them.
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Inclusion-Exclusion Principle and Euler’s function

Let M = Zm, where m = pe11 · p
e2
2 · . . . · p

ek
k . Let Pn be the set of elements

in Zm divisible by pn. Then ϕ(m) =|M\ ∪n Pn |

This is because a ∈ Zm is invertible iff none of p1, . . . pk divides a.

|Pi|= m
pi

, |Pi ∩ Pj|= m
pipj

... |Pi1 ∩ . . . ∩ Pi`|= m
pi1pi2 ...pi`

.

and hence:

ϕ(m) = m− m

p1
− . . .− m

pk
+

m

p1p2
+ ...+

m

pk−1pk
− m

p1p2p3
− . . .

= m ·
(

1− 1

p1

)
·
(

1− 1

p2

)
· . . . ·

(
1− 1

pk

)
.
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