
Software Assurance
 ITI8610-Tarkvara töökindlus

Goals and content

2015 Autumn

Why is this course needed?

• EDS Fails Child Support (2004)

 Software giant EDS introduced in 2004 a complex IT system to
the U.K.’s Child Support Agency. Same time, the Department
for Work and Pensions restructured the agency. These actions
were completely incompatible.

Result - The system overpaid 1.9 million people, underpaid
700,000, had $7 billion in uncollected child support payments,
a backlog of 239,000 cases,

 In total cost the UK taxpayers over

 $1 billion to date.

LA Airport Flights Grounded (2007)

A single faulty piece of embedded software, on a network card,
sends out faulty data on the U.S. Customs and Border
Protection network, bringing the entire system to a halt.
Nobody is able to leave or enter the U.S. from the LA Airport for
over eight hours.
Result - Over 17,000 planes
grounded for the duration of
the outage.

The Ariane 5 Launcher Failure

• A European rocket designed to launch
commercial payloads, approximately 37
seconds after a successful lift-off, lost control.

• It started to break up due to uncontrollable
stress.

• Ground controllers initiated self-destruct and
the rocket and payload was destroyed.

The Ariane 5 Launcher Failure

• Software failure occurred when an attempt to convert a 64-bit
floating point number to a signed 16-bit integer caused the
number to overflow. The lack of an associated exception
handler lead to a software shutdown.

• Aggregate cost: $640 million

• Loss of life: 160

and many more...

• read
https://en.wikipedia.org/wiki/List_of_softwar
e_bugs

https://en.wikipedia.org/wiki/List_of_software_bugs
https://en.wikipedia.org/wiki/List_of_software_bugs

Lessons learned

• A 2002 study commissioned by the National Institute of
Standards and Technology found that software bugs cost the
US economy $59.5 billion every year

• The study estimated that more than a third of that amount,
$22.2 billion, could be eliminated by

– improved testing,

– and even more by applying systematic analysis and
development techniques.

What is software assurance?

Application of technologies and processes to achieve a
required level of confidence that software systems
and services

– function in the intended manner,

– are free from accidental or intentional vulnerabilities,

– provide security capabilities appropriate to the threat
environment, and

– recover from intrusions and failures.

Who needs it?

• Mostly professional software security and assurance
practitioners

• But to some extent all who deal with IT and SE issues

• SW assurance is already part of many Master of software
engineering curricula over world.

• Main reference curriculum issued by Software Engineering
Institute, Carnegie Mellon Univ. U.S.

Course differs from traditional SE and
CS programs

• Special areas of emphasis:
– Software and services,
– their development and acquisition
– Security and correct functionality: defective software isn’t

dependable or secure
– Software analytics: the ability to analyze software to

ensure that it has both the right security properties and
the right functionality

– System operations: monitor and assess to ensure that
systems continue to have the right security properties in
their operational environment

– Auditable evidence: the ability to produce rigorous
evidence of assurance processes and outcomes

Expected outcomes 1 (1)

Graduates will have the following abilities:

• In Assurance Process and Management

– Assurance across life cycles: to incorporate assurance technologies and
methods into life-cycle processes and development models for new or
evolutionary system development, and for system or service acquisition

– Risk management: to perform risk analysis, trade-off assessment, and
prioritization of security measures.

– Assurance assessment: to analyze and validate the effectiveness of
assurance operations and create auditable evidence of security
measures.

– Assurance management: to make a business case for software
assurance, lead assurance efforts, understand standards, comply with
regulations, plan for business continuity, and keep current in security
technologies.

1 - Mead et al., 2010a

Expected outcomes (2)

• Assurance Product and Technology
– System security assurance: to incorporate effective security

technologies and methods into new and existing systems.

– System functionality assurance: to verify new and existing system
functionality for conformance to requirements and absence of
malicious content.

– System operational assurance: to monitor and assess system
operational security and respond to new threats

Context of the course

Module I

Module II

Module III

Course organization
• Lectures Mon 14:00-15:30

• Practical training Fri. 10:00-11:30

• 3 modules:

– 1. module (weeks 2-4, 10 and 16), Maili Markvardt
• Assurance Across Life Cycles

• Assurance Assessment

• Assurance management

– 2. module (weeks 5-9), Aleksandr Lenin
• Risk Management

• System Security Assurance

– 3. module (weeks 11-15), Jüri Vain, Jishu Guin
• System Functionality Assurance

Requirements to pass

• Total mark is arithmetic mean of marks collected from
modules I – III

• Each module is evaluated separately on scale 0 – 100 points

• To pass a module at least 50 % points are required from max
possible

• The points come from tests, lab assignements, home work,
oral report, etc.

• Evaluation of results depends on the specifics of the
assignment of module

Course materials and web

• Course web page
– (Estonian) https://cs.ttu.ee/kursused/

– (English) https://cs.ttu.ee/courses/

• Course Moodle

• http://resources.sei.cmu.edu/asset_files/UsersGuide
/2011_012_001_51607.pdf

https://cs.ttu.ee/kursused/
https://cs.ttu.ee/courses/
http://resources.sei.cmu.edu/asset_files/UsersGuide/2011_012_001_51607.pdf
http://resources.sei.cmu.edu/asset_files/UsersGuide/2011_012_001_51607.pdf

Module 1: Assurance processes & risk
management

Assurance processes
and requirements

SW Risk management Tool considerations

The aim of this module is to show that there has to be some (lots of) thinking before
coding and general understanding about any software or system we are implementing
as IT people.
And that’s everybody’s obligation – programmers’, analysts’, testers’, project managers’,
team leads’, DBAs’ etc.

This is because we don’t make software just because we like to...
We make software in order to solve some problem (instead of creating problems) and
make something easier (instead of making it more difficult).

Learning outcomes for module I

• After completing module I, student is able to

– Analyse and objectively describe SW system’s
context in terms of assurance

– Document non-functional requirements in
controlled manner as a basis for assurance

– Conduct and document risk analysis depending on
SW system’s context

– Implement tool support for SW assurance in an
organisation

Topics timeline & mandatory
assignments

• Week 2: Requirements engineering considerations in
assurance
– Excercise on non-functional requirements

• Week 3: Risk management: Concept and preparations
– Risk analysis preparations excercise for SW system

• Week 4: Risk management: Risk analysis
– Risk analysis excercise for SW system

• Week 10: Tool support for analysis
– Practical exercise in example of quality assurance

management tool
– Week 16: TBA

Conditions

• All assignments are mandatory
– Solving the assignment itself

– Reviewing another group’s solution

• My assignments are usually done in groups

• Deadline for each practice assignment is usually
following week’s Friday
– Assignment & review – plan your timing with care

– Don’t be late if you have not agreed another deadline
in advance!

• Submitted via e-learning environment

Module II: Security Assurance

IT – business enabler or a threat?

Module II: Security Assurance

Module II: Security Assurance

The course is about:
• Designing reliable secure and trustworthy systems
• Critical/weak spots in software. Typical attack vectors
• Vulnerability and threat identification
• Security patterns, best practices, security testing
• Security vs usability
• Security fallacies
The course is not about:
• Designing security systems
• Cryptography
• Reliability, fault tolerance and safety

Module II: Security Assurance

Practice hands-on assignments:

1. Threat identification, control and mitigation

2. Vulnerability identification

3. Secure software design

The structure of the course is subject to possible
changes due to the audience background.

Alternatives are negotiable.

Module III: Assured Software Analytics

Focus area

• System functionality assurance

Reliability

Robustness Correctness

Module III: Assured Software Analytics

Method

• Design by contracts

• Correctness - Adherence to contracts

• Robustness - Handle violation of contracts

Module III: Assured Software Analytics

Practise Environment
• Contracts for Java (Cofoja) - A contract programming

framework and test tool for Java, which uses annotation
processing and bytecode instrumentation to provide run-
time checking.

Module III: Assured Software Analytics

Pre-requisites

• Basic knowledge of Java programming language.

• Familiarity with basic data structures (List, Map,
etc.)

Module III: Assured Software Analytics

• After completing module III, student is able to

– specify functional and non-functional
requirements as contracts and use contracts in
software processes and development increments

– analyse and verify contracts

– easily adapt to new contract based development
tools.

Module III: Assured Software Analytics

Assignments

• The module has two assignment.

• Short class assignment - 40% grade for Module III

• Take home assignment - 60% grade for Module III

If bridges were built like software...

Contacts

• Jüri Vain

juri.vain@ttu.ee

• Maili Markvardt

maili.markvardt@ttu.ee

• Aleksandr Lenin

aleksandr.lenin@ttu.ee

• Jishu Guin

jishu.guin@ttu.ee

mailto:juri.vain@ttu.ee
mailto:Maili.markvardt@ttu.ee
mailto:aleksandr.lenin@ttu.ee
mailto:jishu.guin@ttu.ee

