Model checking timed transition systems: timed automata

Lecture 5

Slides borrowed from Brian Nielsen (AU)

Finite State Machine (Mealy)

condition		effect	
current state	input	output	next state
q_{1}	coin	-	q_{2}
q_{2}	coin	-	q_{3}
q_{3}	cof-but	cof	q_{1}
q_{3}	tea-but	tea	q_{1}

Inputs = \{cof-but, tea-but, coin\}
Outputs $=\{$ cof,tea $\}$
States: $\left\{\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}\right\}$
Initial state $=q_{1}$
Transitions $=\{$

$$
\begin{aligned}
& \left(q_{1}, \text { coin, }-, q_{2}\right), \\
& \left(q_{2}, \text { coin, }-, q_{3}\right), \\
& \left(q_{3}, \text { cof-but, cof, } q_{1}\right),
\end{aligned}
$$

(tea-but, tea, q_{1})
Sample run:
$\mathrm{q}_{1} \xrightarrow{\text { coin } /-} \mathrm{q}_{2} \xrightarrow{\text { coin } /-} \mathrm{q}_{3} \xrightarrow{\text { cof-but } / \text { cof }} \mathrm{q}_{1} \xrightarrow{\text { coin } /-}$

$$
\mathrm{q}_{2} \xrightarrow{\text { coin } /}-\mathrm{q}_{3} \xrightarrow{\text { cof-but } / \text { cof }} \mathrm{q}_{1}
$$

FSM as program 1

```
enum currentState {q1,q2,q3};
enum input {coin, cof_but,tea_but};
int nextStateTable[numStates][numInputs] = {
    q2,q1,q1,
    q3,q2,q2,
    q3,q1,q1 };
int outputTable[numStates][numInputs] = {
    0,0,0,
    0,0,0,
    coin,cof,tea};
While(Input=waitForInput()) {
    OUTPUT(outputTable[currentState,input])
    currentState=nextStateTable[currentState,input];
```


Adding Time

FSM
\downarrow
Timed Automata

Dumb Light Control

WANT: if press is issued twice quickly then the light will get brighter; otherwise the light is turned off.

Dumb Light Control

Sollution: Add real-valued clock x to model the timing requirements: \mid quickly] $=x \leq 3$

Timed Automata

States:

(location, $x=v$) where $v \in \mathbf{R}$
(Off , x=0)

Timed Automata

States:

(location, $x=v$) where $v \in R$

Transitions:
delay $4.32 \rightarrow$ (Off, $x=4.32$)

Timed Automata

States:

(location, $x=v$) where $v \in R$

```
Transitions:
delay 4.32 }->\mathrm{ (Off, x=4.32)
press? }\quad->\mathrm{ (Light, x=0)
```


Timed Automata

States:

(location, $x=v$) where $v \in \mathbf{R}$
Transitions:

```
        ( Off , x=0 )
delay 4.32 }->\mathrm{ (Off, x=4.32)
press? }\quad->\mathrm{ (Light, x=0)
delay 2.51 }->\mathrm{ (Light, }\textrm{x}=2.51
```


Timed Automata

States:

(location, $x=v$) where $v \in \mathbf{R}$

```
Transitions:
delay 4.32 }->\mathrm{ (Off, x=4.32)
press? }->\mathrm{ (Light, x=0 )
delay 2.51 }->\mathrm{ (Light, }x=2.51
press? }\quad->\mathrm{ (Bright, x=2.51)
```


Intelligent Light Control

Using Invariants
Requirement: automatically switch light off after 100 time units

$$
x:=0 \quad x=100
$$

Intelligent Light Control

Using Invariants

$$
x:=0 \quad x=100
$$

Transitions:

$$
\begin{aligned}
(\text { Off }, & x=0) \\
& \rightarrow(\text { Off }, x=4.32) \\
& \rightarrow(\text { Light }, x=0) \\
& \rightarrow(\text { Light }, x=4.51) \\
& \rightarrow(\text { Light }, x=0) \\
& \rightarrow(\text { Light }, x=100) \\
& \rightarrow(\text { Off }, x=0)
\end{aligned}
$$

delay 4.32
press?
delay 4.51
press?
delay 100
τ

Intelligent Light Control

Requirements including uncertainty:
Automatically switch light off after between 90-100 time units

Light Controller || User
 $x:=0$
 $x=100$

Synchronization
$\mathrm{y} \geq 10$ press!

Transitions:

```
delay 20 ( Off, Rest, x=0, y=0 )
(Li,Rest, x =20,y=20)
press?! }->\mathrm{ (Light, Busy, }\mathbf{x=0,y=0}
delay 2 
press?! }->\mathrm{ (Bright, Rest, }\textrm{x}=0,\textrm{y}=0
```


Networks of Timed Automata

(a'la CCS)

Two-way synchronization on complementary actions.

Closed Systems!

Example transitions

Timing Uncertainty

- Unpredictable or variable
- response time,
- computation time
- transmission time etc:

LightLevel must be adjusted between 5 and 10

Comitted Locations

- Locations marked C
- No delay in committed location.
- No interleaving with parallel transitions
- Handy to model atomic sequences
- The use of committed locations reduces the number of states in a model, and allows for more space and time efficient analysis.
- S0 to s5 executed atomically

Urgent Channels and Locations

- Locations marked U
- No delay like in committed location.
- But Interleaving permitted
- Channels declared "urgent chan"
- Time doesn't elapse when a synchronization is possible on a pair of urgent channels
- Interleaving allowed

Broad-casts

- chan coin, cof, cofBut;
- broadcast chan join;
- sending: output join!
- every automaton that listens to join moves on
- ie. every automaton with enabled "join?" transition moves in one step
- may be zero! Listeners, sender can progress anyway

Other Uppaal features

- Bounded domains
- int [1..4] a;
- C-like data-structures and user defined functions in declaration section
- structs, arrays, and typedef
- non-deterministic assignment:
- select a:T
- forall, exists in expressions
- Scalar sets (for giving unique ID's)
- Process and channel priorities
- Value passing (emulation)

Timed traces

Reachable?

(LO, $x=0, y=0$)
$\rightarrow_{\varepsilon(1.4)}$
(L0, $x=1.4, y=1.4$)
\rightarrow
(L0, $x=1.4, y=0$)
$\rightarrow_{\varepsilon(1,6)}$
(LO, x=3.0,y=1.6)
\rightarrow
$(L 0, x=3.0, y=0)$

From explicit clock values to zones (from infinite to finite)

Explicit state
($\mathrm{n}, \mathrm{x}=3.2, \mathrm{y}=2.5$)
(n, x=3.2, y
y

Symbolic Transitions

Thus $(n, 1 \leq x \leq 4,1 \leq y \leq 3) \rightarrow^{a}(m, 3<x, y=0)$

Symbolic Exploration

Reachable?

Symbolic Exploration

Delay

Symbolic Exploration

Left

Reachable?

Symbolic Exploration

Left

Symbolic Exploration

Delay

Symbolic Exploration

Left

Symbolic Exploration

Left

Symbolic Exploration

Delay

Reachable?

Symbolic Exploration

Down

Difference Bound Matrices

$x_{0}-x_{0}<=0$	$x_{0}-x_{1}<=-2$	$x_{0}-x_{2}<=-1$
$x_{1}-x_{0}<=6$	$x_{1}-x_{1}<=0$	$x_{1}-x_{2}<=3$
$x_{2}-x_{0}<=5$	$x_{2}-x_{1}<=1$	$x_{2}-x_{2}<=0$

$$
X_{i}-X_{j}<=C_{i j}
$$

Forward Reachability Algorithm

I nit -> Final ?

Forward Reachability Algorithm

 Init -> Final ?

Forward Reachability Algorithm

 Init -> Final ?

INITIAL Passed := Ø; Waiting := $\left\{\left(\mathrm{n}_{0}, \mathrm{Z}_{0}\right)\right\}$

REPEAT
pick (n, Z) in Waiting
if $(\mathrm{n}, \mathrm{Z})=$ Final return true
for all $(n, Z) \rightarrow\left(n^{\prime}, Z^{\prime}\right)$:
if for some ($n^{\prime}, Z^{\prime \prime}$) $Z^{\prime} \subseteq Z^{\prime \prime}$ continue else add (n ', Z^{\prime}) to Waiting move (n, Z) to Passed

UNTIL Waiting $=\varnothing$
return false

Forward Reachability Algorithm

Init -> Final?

INITIAL Passed := \varnothing;
Waiting := $\left\{\left(\mathrm{n}_{0}, \mathrm{Z}_{0}\right)\right\}$
REPEAT
pick (n, Z) in Waiting
if $(\mathrm{n}, \mathrm{Z})=$ Final return true
for all $(n, Z) \rightarrow\left(n^{\prime}, Z^{\prime}\right)$:
if for some (n ', $Z^{\prime \prime}$) $Z^{\prime} \subseteq Z^{\prime \prime}$ continue else add (n ', Z^{\prime}) to Waiting move (n, Z) to Passed

UNTIL Waiting = \varnothing
return false

Forward Reachability Algorithm

Init -> Final?

INITIAL Passed := \varnothing;
Waiting := $\left\{\left(\mathrm{n}_{0}, \mathrm{Z}_{0}\right)\right\}$
REPEAT
pick (n, Z) in Waiting
if $(\mathrm{n}, \mathrm{Z})=$ Final return true for all $(n, Z) \rightarrow\left(n^{\prime}, Z^{\prime}\right)$: if for some (n ', $Z^{\prime \prime}$) $Z^{\prime} \subseteq Z^{\prime \prime}$ continue else add (n, Z^{\prime}) to Waiting move (n, Z) to Passed

UNTIL Waiting = \varnothing
return false

Forward Reachability Algorithm

Init -> Final ?

INITIAL Passed := \varnothing;
Waiting := $\left\{\left(\mathrm{n}_{0}, \mathrm{Z}_{0}\right)\right\}$
REPEAT
pick (n, Z) in Waiting
if $(\mathrm{n}, \mathrm{Z})=$ Final return true for all $(n, Z) \rightarrow\left(n^{\prime}, Z^{\prime}\right)$: if for some (n ', $Z^{\prime \prime}$) $Z^{\prime} \subseteq Z^{\prime \prime}$ continue else add (n^{\prime}, Z^{\prime}) to Waiting move (n, Z) to Passed

UNTIL Waiting $=\varnothing$
return false

Forward Reachability Algorithm

Init -> Final?

INITIAL Passed := \varnothing;
Waiting := $\left\{\left(\mathrm{n}_{0}, \mathrm{Z}_{0}\right)\right\}$
REPEAT
pick (n, Z) in Waiting
if $(\mathrm{n}, \mathrm{Z})=$ Final return true for all $(n, Z) \rightarrow\left(n^{\prime}, Z^{\prime}\right)$: if for some (n ', $Z^{\prime \prime}$) $Z^{\prime} \subseteq Z^{\prime \prime}$ continue else add (n^{\prime}, Z^{\prime}) to Waiting move (n, Z) to Passed

UNTIL Waiting $=\varnothing$
return false

Specification (Query) Language

UPPAAL Property Specification Language

- E<> p Possible
- E[] p potentially always
- P --> \mathbf{q} leads-to

$p::=a .1|\operatorname{gd}| g_{c} \mid p$ and $p \mid$ p or p | not p | p imply p |
(p) | deadlock(only for A[],E<>)

A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)

Uppaal "Computation Tree Logic"

Logical Specifications

- Validation Properties
- Possibly: E<> p
- Safety Properties
- Invariant: A[] p
- Pos. Inv.: E[] P
- Liveness Properties
- Eventually:A<> p
- Leadsto: $p-->p$
- Bounded Liveness
- Leads to within: $p-->\leq t q$

The expressions p and q must be type safe, side effect free, and evaluate to a boolean.

Only references to integer variables, constants, clocks, are allowed (and arrays of these).

Logical Specifications

- Validation Properties
- Possibly: E<> p
- Safety Properties
- Invariant: A[] p
- Pos. Inv.: E[] p

- Liveness Properties
- Eventually:A<> p
- Leadsto: P --> q
- Bounded Liveness
- Leads to within: $p-->\leq t q$

Logical Specifications

- Validation Properties
- Possibly: E<> p
- Safety Properties
- Invariant: A[] p
- Pos. Inv.: E[] p

- Liveness Properties
- Eventually:A<> p
- Leadsto: p--> q
- Bounded Liveness
- Leads to within: $p-->\leq t q$

Logical Specifications

- Validation Properties
- Possibly:
$\mathrm{E}<>p$
- Safety Properties
- Invariant: A[] p
- Pos.Inv.: E[] p
- Liveness Properties
- Eventually:A<>p
- Leadsto: $p-->q$
- Bounded Liveness
- Leads to within: $p-->{ }_{\leq t} q$

$$
\varphi-->\psi
$$

Logical Specifications

- Validation Properties
- Possibly: E<> p
- Safety Properties
- Invariant: A[] p
- Pos. Inv.: E[] P
- Liveness Properties
- Eventually:A<> p
- Leadsto: p--> q

- Bounded Liveness
- Leads to within: $p-->$ st q

Jug Example

- Safety: Never overflow.
- A[] forall(i:id_t) level[i] <= capa[i]
- Validation/Reachability: How to get 1 unit.
- E<> exists(i:id_t) level[i] == 1

Train-Gate Crossing

- Safety: One train crossing.
- A[] forall (i : id_t) forall (j : id_t)

Train(i).Cross \&\& Train(j).Cross imply $\mathrm{i}==\mathrm{j}$

- Liveness: Approaching trains eventually cross.
- Train(0).Appr --> Train(0).Cross
- Train(1).Appr --> Train(1).Cross
- No deadlock.
- A[] not deadlock

