
Slides borrowed from Brian Nielsen (AU)



q1

q2

q3

coin / -

tea-but / teacof-but / cof
coin / -

Inputs = {cof-but, tea-but, coin}
Outputs = {cof,tea}
States: {q1,q2,q3}
Initial state = q1
Transitions= {

(q1, coin, -, q2),
(q2, coin, -, q3),
(q3, cof-but, cof, q1),
(q3, tea-but, tea, q1) 
}

condition effect
current 
state

input output next 
state

q1 coin - q2

q2 coin - q3

q3 cof-but cof q1

q3 tea-but tea q1

Sample run:

coin/ - coin/- coin/ -cof-but / cof

coin/ -

q1 q2 q3 q1

q2
cof-but / cofq1q3

Presenter
Presentation Notes
We have studied simple models of computation starting from KS and state transition systems and  the algorithms of their MC.In practice  the convenience of use also matters and people have temptation to improve the expressibility of the formal models. Naturally,  the price to pay is growing complexity of MC.---One natural extension is to introduces the input/output events to the state transition system. In FSM the transitions caused by input events and producing output events are assumed to be atomic, although if you think of real systems there is always some delay between input and output. But in untimed abstract model it is ignored.---FSM have alternative forms of representation...



enum currentState {q1,q2,q3};
enum input {coin, cof_but,tea_but};
int nextStateTable[numStates][numInputs] = { 

q2,q1,q1, 
q3,q2,q2,
q3,q1,q1 };

int outputTable[numStates][numInputs] = { 
0,0,0, 
0,0,0,
coin,cof,tea};

While(Input=waitForInput()) {
OUTPUT(outputTable[currentState,input])
currentState=nextStateTable[currentState,input];

}



Timed Automata

FSM



Bright

WANT: if press is issued twice quickly 
then the light will get brighter; otherwise the light is 
turned off.

Off Light
press? press?

press?

press?



Off Light Bright
press? press?

press?

press?

Solution: Add real-valued clock x to model 
the timing requirements: |[quickly]| = x ≤ 3

x:=0
x ≤ 3

x>3



Off Light
press? press?

press?

press?

x:=0
x ≤ 3

x>3

Synchronizing 
action

Guard
Conjunctions 
of x~n

x: real-valued 
clock

Reset

Transitions:
( Off , x=0 ) 

delay 4.32  ( Off , x=4.32 )  
press?  ( Light , x=0 )
delay 2.51  ( Light , x=2.51 )
press?  ( Bright , x=2.51 )

States:
( location , x=v)  where v ∈ R

Bright



Off Light
press? press?

press?

press?

x:=0
x ≤ 3

x>3

Synchronizing 
action

Guard
Conjunctions 
of x~nx: real-valued 

clock

Reset

Transitions:
( Off , x=0 ) 

delay 4.32  ( Off , x=4.32 )  
press?  ( Light , x=0 )
delay 2.51  ( Light , x=2.51 )
press?  ( Bright , x=2.51 )

States:
( location , x=v)  where v ∈ R

Bright



Off Light
press? press?

press?

press?

x:=0

x ≤ 3

x>3

Synchronizing 
action

Guard
Conjunctions 
of x~nx: real-valued 

clock

Reset

Transitions:
( Off , x=0 ) 

delay 4.32  ( Off , x=4.32 )  
press?  ( Light , x=0 )
delay 2.51  ( Light , x=2.51 )
press?  ( Bright , x=2.51 )

States:
( location , x=v)  where v ∈ R

Bright



Off Light
press? press?

press?

press?

x:=0

x ≤ 3

x>3

Synchronizing 
action

Guard
Conjunctions 
of x~nx: real-valued 

clock

Reset

Transitions:
( Off , x=0 ) 

delay 4.32  ( Off , x=4.32 )  
press?  ( Light , x=0 )
delay 2.51  ( Light , x=2.51 )
press?  ( Bright , x=2.51 )

States:
( location , x=v)  where v ∈ R

Bright



Off Light
press? press?

press?

press?

x:=0

x ≤ 3

x>3

Synchronizing 
action

Guard
Conjunctions 
of x~nx: real-valued 

clock

Reset

Transitions:
( Off , x=0 ) 

delay 4.32  ( Off , x=4.32 )  
press?  ( Light , x=0 )
delay 2.51  ( Light , x=2.51 )
press?  ( Bright , x=2.51 )

States:
( location , x=v)  where v ∈ R

Bright



BrightOff Light
press? press?

press?

x:=0
x ≤ 3

x>3

x ≤ 100

x=100x:=0

x ≤ 100

x=100x:=0

x:=0

press?
x:=0

Using Invariants

x:=0

Requirement: automatically switch light off after 100 time units

Presenter
Presentation Notes
Auto turn off if idle



BrightOff Light
press? press?

press?

x:=0

x ≤ 3

x>3

x ≤ 100

x=100x:=0

x ≤ 100

x=100x:=0

x:=0

press?
x:=0

Using Invariants

Transitions:
( Off , x=0 ) 

delay 4.32  ( Off , x=4.32 )  
press?  ( Light , x=0 )
delay 4.51  ( Light , x=4.51 )
press?  ( Light , x=0 )
delay 100  ( Light , x=100)
τ  ( Off , x=0)

Note:
( Light , x=0 ) delay 103 

X 

Invariants 
ensures 
progress

x:=0

Presenter
Presentation Notes
To keep the light on one has to press not more seldom than once in 100 tu.



Off Light Brightpress? press?

press?

x:=0

x ≤ 3

x>3

x ≤ 100
x>=90

x:=0

x ≤ 100

x>=90x:=0

x:=0

press?
x:=0

x:=0

Requirements including uncertainty:
Automatically switch light off after between 90-100 time units

Location 
Invariant

Presenter
Presentation Notes
Auto turn off if idle



BrightOff Light
press? press?

press?

x:=0
x ≤ 3

x>3

x ≤ 100
x=100
x:=0

x ≤ 100

x=100x:=0

x:=0

press?
x:=0

Rest Busy

y≥10

y:=0

y ≤ 10

press!

press!
y:=0

Transitions: 
(  Off, Rest, x=0, y=0 )

delay 20  ( Off, Rest, x=20, y=20 )
press?!  ( Light, Busy, x=0, y=0 )
delay 2  ( Light, Busy, x=2, y=2)
press?!  ( Bright, Rest, x=0, y=0)

Synchronization

x:=0

Presenter
Presentation Notes
Modelling interactionsES are interacting systems. To model requirments that describe interaction we need a model construct for that :  Parallel composition to model interactions between system and environment (or between system components)



l1

l2

a!

x>=2

x := 0

m1

m2

a?

y<=4

………….
Two-way synchronization
on complementary actions.

Closed Systems!

(l1, m1,………, x=2, y=3.5,…..)                      (l2,m2,……..,x=0,  y=3.5, …..)

(l1,m1,………,x=2.2, y=3.7, …..)
0.2

tau

Example transitions

If a URGENT CHANNEL

Presenter
Presentation Notes
Synchronising  by means of  clock conditions synchronizaton signals



 Unpredictable or variable
◦ response time,
◦ computation time
◦ transmission time etc:

LightLevel must be adjusted 
between 5 and 10

Initially 
T=0



 Locations marked C
◦ No delay in committed location.
◦ No interleaving with parallel transitions

 Handy to model atomic sequences
 The use of committed locations 

reduces the number of  states in a 
model, and allows for more space 
and time efficient analysis.

 S0 to s5 executed atomically



 Locations marked U
◦ No delay like in committed location.
◦ But Interleaving permitted

 Channels declared “urgent chan”
◦ Time doesn’t elapse when a synchronization is 

possible on a pair of urgent channels
◦ Interleaving allowed



 chan coin, cof, cofBut;
 broadcast chan join;
◦ sending: output join!
◦ every automaton that listens to join moves on
◦ ie. every automaton with enabled “join?” transition 

moves in one step
◦ may be zero! Listeners, sender can progress anyway



 Bounded domains
◦ int [1..4] a;

 C-like data-structures and user defined functions in 
declaration section
◦ structs, arrays, and typedef

 non-deterministic assignment:
◦ select a:T

 forall, exists in expressions
 Scalar sets (for giving unique ID’s) 
 Process and channel priorities
 Value passing (emulation)



Reachable?

x

y

(L0,x=0,y=0)
ε(1.4)
(L0,x=1.4,y=1.4)
a
(L0,x=1.4,y=0)
ε(1.6)
(L0,x=3.0,y=1.6)
a
(L0,x=3.0,y=0)

a b

c

a a

Presenter
Presentation Notes
Now, we move to  TA semantics2 clocks x and yTransitions a, b, cRepresent state trajectories in 2D space.Ask if L1 is reachableFor explicit state MC  these traces are suite, but the number of potential traces is continum and exhaustive search excluded!



12-02-2008Alexandre David, TOV'08
3
1

Explicit state
(n, x=3.2, y=2.5 )

x

y

x

y

Symbolic state (set)

Zone:
conjunction of
clock constraints 
of form:
x-y<=const1,
x<=const2,
x>=const3

(n, 1 ≤ x ≤ 4, 1 ≤ y ≤ 3)

Presenter
Presentation Notes
For MC we need finite representation of the sets of states.How to define the quotient state space? Simple clock constraints can be represented as zones.



n

m

x>3

y:=0

In n delays to

Update projects to

x

y
1 ≤ x ≤ 4
1 ≤ y ≤ 3

x

y
1 ≤ x, 1 ≤ y
-2 ≤ x-y ≤ 3

x

y 3 < x, 1 ≤ y
-2 ≤ x-y ≤ 3

3 < x, y=0

Thus  (n, 1 ≤ x ≤ 4, 1 ≤ y ≤ 3)  →a (m,3 < x, y=0)

x

y

a
Guard conjoins to

3
y

x

Presenter
Presentation Notes
How TA transitions transform the zones?Delay means the distance between clock values remains same, although the values increase-



Reachable?

x

y



Reachable?

x

y

Delay



Reachable?

x

y

Left



Reachable?

x

y

Left



Reachable?

x

y

Delay



Reachable?

x

y

Left



Reachable?

x

y

Left



Reachable?

x

y

Delay



Reachable?

x

y

Down



x0-x0<=0 x0-x1<=-2 x0-x2<=-1

x1-x0<=6 x1-x1<=0 x1-x2<=3

x2-x0<=5 x2-x1<=1 x2-x2<=0

xi-xj<=cij

x1

x2

Zone

Presenter
Presentation Notes
- All symbolic states of UPTA clocks are representable canonically by DBM-s. DBM is a (N+1)*(N+1) table with an ij-element being linear constraint xi-xj<=cij- Having 2 DBMs (representing symbolic states), we can use them for checking zone inclusion.- That is only symbolic check we need in TA model checking!



Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’⊆ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

PW

Presenter
Presentation Notes
Due to the way how zones are constructed from initial values the forward symbolic transformations is more feasible than backward one. So we apply forward reachability search for MC.The algorithm uses two sets: Waiting and Passed symbolic states.



Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’⊆ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

PW



Passed

Waiting

Final?

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’⊆ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

PW



Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’⊆ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

PW



Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’⊆ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

PW



Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’⊆ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

PW



Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
pick (n,Z) in Waiting
if (n,Z) = Final return true
for all (n,Z)→(n’,Z’):

if for some (n’,Z’’) Z’⊆ Z’’ continue
else add (n’,Z’) to Waiting
move (n,Z) to Passed

UNTIL Waiting = Ø
return false

Init -> Final ?

PW





 A[] p 
 A<> p

 E<> p 
 E[] p
 P --> q

clock guardsdata guardsprocess location

p::= a.l | gd | gc | p and p |
p or p | not p | p imply p |
( p ) | deadlock(only for A[],E<>)

A[] (mc1.finished and mc2.finished) imply (accountA+accountB==200)

Possible
inevitable
always

potentially always

leads-to



p

. . .

. . .

. . .

. . .

E<> p Possible

p

p p

. . .

. . .

. . .

. . .

A<> p inevitable

p

p

p

p p

p

. . .

. . .

. . .

. . .

A[] p

p

always

p

p

p

. . .

. . .

. . .

. . .

E[] p potentially always p --> q leads-to

p

. . .

. . .

q q q

. . .

. . .

. . .



 Validation Properties
◦ Possibly: E<> p

 Safety Properties
◦ Invariant: A[] p
◦ Pos. Inv.: E[] P

 Liveness Properties
◦ Eventually:A<> p
◦ Leadsto: p --> p

 Bounded Liveness
◦ Leads to within: p --> ≤t q

The expressions  p and 
q must be type safe, 
side effect free, and 
evaluate to a boolean.

Only references to 
integer variables, 
constants, clocks, and 
locations are allowed 
(and arrays of these).



 Validation Properties
◦ Possibly: E<> p

 Safety Properties
◦ Invariant: A[] p
◦ Pos. Inv.: E[] p

 Liveness Properties
◦ Eventually:A<> p
◦ Leadsto: P --> q

 Bounded Liveness
◦ Leads to within: p --> ≤t q



 Validation Properties
◦ Possibly: E<> p

 Safety Properties
◦ Invariant: A[] p
◦ Pos. Inv.: E[] p

 Liveness Properties
◦ Eventually:A<> p
◦ Leadsto: p --> q

 Bounded Liveness
◦ Leads to within: p --> ≤t q



 Validation Properties
◦ Possibly: E<> p

 Safety Properties
◦ Invariant: A[] p
◦ Pos. Inv.: E[] p

 Liveness Properties
◦ Eventually:A<> p
◦ Leadsto: p --> q

 Bounded Liveness
◦ Leads to within: p --> ≤t q



 Validation Properties
◦ Possibly: E<> p

 Safety Properties
◦ Invariant: A[] p
◦ Pos. Inv.: E[] P

 Liveness Properties
◦ Eventually:A<> p
◦ Leadsto: p --> q

 Bounded Liveness
◦ Leads to within: p --> ≤t q

· t

· t



 Safety: Never overflow.
◦ A[] forall(i:id_t) level[i] <= capa[i]

 Validation/Reachability: How to get 1 unit.
◦ E<> exists(i:id_t) level[i] == 1



 Safety: One train crossing.
◦ A[] forall (i : id_t) forall (j : id_t)

Train(i).Cross && Train(j).Cross imply i == j
 Liveness: Approaching trains eventually cross.
◦ Train(0).Appr --> Train(0).Cross
◦ Train(1).Appr --> Train(1).Cross
◦ …

 No deadlock.
◦ A[] not deadlock


	Model checking timed transition systems: timed automata��Lecture 5
	Finite State Machine (Mealy)
	FSM as program 1
	Adding Time    
	Dumb Light Control
	Dumb Light Control
	Timed Automata
	Timed Automata
	Timed Automata
	Timed Automata
	Timed Automata
	Intelligent Light Control
	Intelligent Light Control
	Intelligent Light Control
	Light Controller || User
	Networks of Timed Automata� 				(a’la CCS)
	Timing Uncertainty
	Comitted Locations
	Urgent Channels and Locations
	Broad-casts
	Other Uppaal features
	Timed traces
	From explicit clock values to zones �(from infinite to finite)
	Symbolic Transitions
	Symbolic Exploration
	Symbolic Exploration
	Symbolic Exploration
	Symbolic Exploration
	Symbolic Exploration
	Symbolic Exploration
	Symbolic Exploration
	Symbolic Exploration
	Symbolic Exploration
	Difference Bound Matrices
	Forward Reachability Algorithm
	Forward Reachability Algorithm
	Forward Reachability Algorithm
	Forward Reachability Algorithm
	Forward Reachability Algorithm
	Forward Reachability Algorithm
	Forward Reachability Algorithm
	Specification (Query) Language
	UPPAAL Property Specification Language
	Uppaal “Computation Tree Logic”
	Logical Specifications
	Logical Specifications
	Logical Specifications
	Logical Specifications
	Logical Specifications
	Jug Example
	Train-Gate Crossing

