Model checking timed transition systems: timed automata

Lecture 5

Slides borrowed from Brian Nielsen (AU)

Finite State Machine (Mealy)

condition		effect	
current state	input	output	next state
q ₁	coin	-	q ₂
q ₂	coin	-	q ₃
q ₃	cof-but	cof	q ₁
q ₃	tea-but	tea	q ₁

Inputs = {cof-but, tea-but, coin} Outputs = {cof,tea} States: {q₁,q₂,q₃} Initial state = q₁ Transitions= { (q₁, coin, -, q₂), (q₂, coin, -, q₃), (q₃, cof-but, cof, q₁), (q₅, tea-but, tea, q₁)

Sample run:

$$q_1 \xrightarrow{\text{coin}/-} q_2 \xrightarrow{\text{coin}/-} q_3 \xrightarrow{\text{cof-but}/-} q_1 \xrightarrow{\text{coin}/-} q_1$$

$$q_2 \underline{\operatorname{coin}} \to q_3 \underbrace{\operatorname{cof-but}}_{q_3} q_1$$

FSM as program 1

```
enum currentState {q1,q2,q3};
enum input {coin, cof_but,tea_but};
int nextStateTable[numStates][numInputs] = {
      q2,q1,q1,
      q3,q2,q2,
      q3,q1,q1 };
int outputTable[numStates][numInputs] = {
      0,0,0,
      0,0,0,
      coin,cof,tea};
While(Input=waitForInput()) {
  OUTPUT(outputTable[currentState, input])
  currentState=nextStateTable[currentState, input];
```

Adding Time

FSM ↓ Timed Automata

Dumb Light Control

WANT: if press is issued twice quickly then the light will get brighter; otherwise the light is turned off.

Dumb Light Control

Solution: Add real-valued clock x to model the timing requirements: $|[quickly]| = x \le 3$

States: (location, x=v) where $v \in \mathbf{R}$ Transitions: (Off, x=0) delay 4.32 \rightarrow (Off, x=4.32)

States: (location, x=v) where $v \in R$

Transitions:	
	(Off , x=0)
delay 4.32	→ (Off , x=4.32)
press?	\rightarrow (Light , x=0)

States: (location, x=v) where $v \in R$

Transitions:	
	(Off , x=0)
delay 4.32	\rightarrow (Off, x=4.32)
press?	\rightarrow (Light, x=0)
delay 2.51	\rightarrow (Light, x=2.51)

States: (location, x=v) where $v \in R$

Transitions:	
	(Off , x=0)
delay 4.32	\rightarrow (Off, x=4.32)
press?	\rightarrow (Light, x=0)
delay 2.51	\rightarrow (Light, x=2.51)
press?	\rightarrow (Bright, x=2.51)

Intelligent Light Control

Using Invariants

Requirement: automatically switch light off after 100 time units

Intelligent Light Control

x:=0

Ę

Using Invariants

x = 100

Transitions: delay 4.32 press? delay 4.51	(Off, x=0) $\rightarrow (Off, x=4.32)$ $\rightarrow (Light, x=0)$ $\rightarrow (Light, x=4.51)$	Note: (Light , x=0) delay 103 →
press? delay 100 τ		Invariants ensures progress

Intelligent Light Control

Requirements including uncertainty: Automatically switch light off after *between* 90–100 time units

Light Controller || User

x = 100

x := 0x:=0 press? gr

Networks of Timed Automata (a'la CCS)

Example transitions

$$(11, m1, ..., x=2, y=3.5,)$$
 tau $(12, m2, ..., x=0, y=3.5,)$
0.2 $(11, m1, ..., x=2.2, y=3.7,)$
If a URGENT CHANNEL

Timing Uncertainty

Unpredictable or variable

- response time,
- computation time
- transmission time etc:

LightLevel must be adjusted between 5 and 10

Comitted Locations

- Locations marked C
 - No delay in committed location.
 - No interleaving with parallel transitions
- Handy to model atomic sequences
- The use of committed locations <u>reduces</u> the number of states in a model, <u>and</u> allows for more space and time efficient analysis.
- S0 to s5 executed atomically

Urgent Channels and Locations

- Locations marked U
 - No delay like in committed location.
 - But Interleaving permitted
- Channels declared "urgent chan"
 - Time doesn't elapse when a synchronization is possible on a pair of urgent channels
 - Interleaving allowed

Broad-casts

- chan coin, cof, cofBut;
- broadcast chan join;
 - sending: output join!
 - every automaton that listens to join moves on
 - ie. every automaton with enabled "join?" transition moves in one step
 - may be zero! Listeners, sender can progress anyway

Other Uppaal features

- Bounded domains
 - int [1..4] a;
- C-like data-structures and user defined functions in declaration section
 - structs, arrays, and typedef
- non-deterministic assignment:
 - select a:T
- forall, exists in expressions
- Scalar sets (for giving unique ID's)
- Process and channel priorities
- Value passing (emulation)

Timed traces

From explicit clock values to zones (*from infinite to finite*)

Explicit state (n, x=3.2, y=2.5) Symbolic state (set) (n, $1 \le x \le 4$, $1 \le y \le 3$)

Symbolic Transitions

Difference Bound Matrices

$$\begin{aligned} x_0 - x_0 <= 0 & x_0 - x_1 <= -2 & x_0 - x_2 <= -1 \\ x_1 - x_0 <= 6 & x_1 - x_1 <= 0 & x_1 - x_2 <= 3 \\ x_2 - x_0 <= 5 & x_2 - x_1 <= 1 & x_2 - x_2 <= 0 \end{aligned}$$

$$X_i - X_j < = C_{ij}$$

Init -> Final ?

Init -> Final ?

INITIAL Passed := \emptyset ; Waiting := {(n₀,Z₀)}

REPEAT pick (n,Z) in Waiting if (n,Z) = Final return true for all (n,Z) \rightarrow (n',Z'): if for some (n',Z'') Z' \subseteq Z'' continue else add (n',Z') to Waiting move (n,Z) to Passed

Init -> Final ?

INITIAL Passed := \emptyset ; Waiting := {(n₀,Z₀)}

REPEAT pick (n,Z) in Waiting if (n,Z) = Final return true for all $(n,Z) \rightarrow (n',Z')$: if for some $(n',Z'') Z' \subseteq Z''$ continue else add (n',Z') to Waiting move (n,Z) to Passed

Init -> Final ?

INITIAL Passed := \emptyset ; Waiting := {(n₀,Z₀)}

REPEAT pick (n,Z) in Waiting if (n,Z) = Final return true for all (n,Z) \rightarrow (n',Z'): if for some (n',Z'') Z' \subseteq Z'' continue else add (n',Z') to Waiting move (n,Z) to Passed

Init -> Final ?

INITIAL Passed := \emptyset ; Waiting := {(n₀,Z₀)}

REPEAT pick (n,Z) in Waiting if (n,Z) = Final return true for all (n,Z) \rightarrow (n',Z'): if for some (n',Z'') Z' \subseteq Z'' continue else add (n',Z') to Waiting move (n,Z) to Passed

Init -> Final ?

INITIAL Passed := \emptyset ; Waiting := {(n₀,Z₀)}

REPEAT pick (n,Z) in Waiting if (n,Z) = Final return true for all (n,Z) \rightarrow (n',Z'): if for some (n',Z'') Z' \subseteq Z'' continue else add (n',Z') to Waiting move (n,Z) to Passed

Init -> Final ?

INITIAL Passed := \emptyset ; Waiting := {(n₀,Z₀)}

REPEAT pick (n,Z) in Waiting if (n,Z) = Final return true for all (n,Z) \rightarrow (n',Z'): if for some (n',Z'') Z' \subseteq Z'' continue else add (n',Z') to Waiting move (n,Z) to Passed

Specification (Query) Language

UPPAAL Property Specification Language

A[] (mcl.finished and mc2.finished) imply (accountA+accountB==200)

Uppaal "Computation Tree Logic"

- Validation Properties
 - Possibly: E<> ρ
- Safety Properties
 - Invariant: A[] p
 - Pos. Inv.: E[] *P*
- Liveness Properties
 - Eventually: A<> p
 - Leadsto: $p \rightarrow p$
- Bounded Liveness
 - Leads to within: $p \rightarrow =_{\leq t} q$

The expressions *p* and *q* must be type safe, side effect free, and evaluate to a boolean.

Only references to integer variables, constants, clocks, and locations are allowed (and arrays of these).

- Validation Properties
 - Possibly: E<> ρ
- Safety Properties
 - Invariant: A[] p
 - Pos. Inv.: E[] *p*
- Liveness Properties
 - Eventually: A<> p
 - Leadsto: P --> q
- Bounded Liveness
 - Leads to within: $p \rightarrow = q$

- Validation Properties
 Possibly: E<> p
- Safety Properties
 - Invariant: A[] p
 - Pos. Inv.: E[] *p*
- Liveness Properties
 - Eventually: A<> p
 - Leadsto: *p* --> *q*
- Bounded Liveness
 - Leads to within: $p \rightarrow = q$

Validation Properties

• Possibly: E<> p

- Safety Properties
 - Invariant: A[] p
 - Pos. Inv.: E[] *p*
- Liveness Properties
 - Eventually: A<> p
 - Leadsto: $p \rightarrow q$
- Bounded Liveness
 Leads to within: n = -

- Validation Properties
 - Possibly: E<> p
- Safety Properties
 - Invariant: A[] p
 - Pos. Inv.: E[] *P*
- Liveness Properties
 - Eventually: A<> p
 - Leadsto: *p* --> *q*
- Bounded Liveness
 - Leads to within: $p \rightarrow_{\leq t} q$

Jug Example

- Safety: Never overflow.
 - A[] forall(i:id_t) level[i] <= capa[i]
- Validation/Reachability: How to get 1 unit.
 E<> exists(i:id_t) level[i] == 1

Train-Gate Crossing

Safety: One train crossing.

- A[] forall (i : id_t) forall (j : id_t) Train(i).Cross && Train(j).Cross imply i == j
- Liveness: Approaching trains eventually cross.
 - Train(0).Appr --> Train(0).Cross
 - Train(1).Appr --> Train(1).Cross

•

- No deadlock.
 - A[] not deadlock