Lecture 7: Introduction to formal specifications

Lecture notes by Mike Gordon are used
Recall some definitions

- *Formal Specification* - using mathematical notation to give a precise description of what a program should do

- *Formal Verification* - using precise rules to mathematically prove that a program satisfies a formal specification

- *Formal Development (Refinement)* - developing programs in a way that ensures mathematically they meet their formal specifications
Introduction

- Verification of programs is based on formal specification and on related verification method.

 We will use Floyd-Hoare logic (FHL)

- Proof systems of the FHL style depend on particular programming language with its syntax and semantics

- In this course we will deal with the verification of
 - deterministic sequential \textit{while}-programs;
 - non-deterministic sequential \textit{while}-programs
 - parallel programs with shared variables;
 - parallel programs with message passing.
Programs as state transition systems

- Programs are **structured specifications** of state transition systems.
- Programming language defines constructs for specifying single transitions and transition compositions.
- State components are referred in conditions of command constructs like *if-, while-, for-, case-command* etc.
Some notations

• Programs are built out of *commands* like assignment, *if-, while-, for-, case-command* etc.

• The terms 'program' and 'command' are synonymous.

• 'Program' will only be used for commands representing complete algorithm.

• The 'statement' is used for conditions on program variables that occur in correctness specifications.
Imperative programs - state

- Executing an imperative program has the effect of changing the *state*
 - i.e. the values of program variables
 - N.B. languages more complex than those described in our course may have states consisting of other things than the values of variables (e.g. I/O).
Imperative programs - execution

• To use an imperative program

 • first establish a state,
 i.e. set some variables to have values of interest

 • then execute the program,
 (to transform the initial state into a final one)

• inspect the values of variables in the final state to get the result.
Simple *while*-language

- **E** ::= *N|V|E1+E2|E1−E2|E1×E2| ...**
- **B** ::= *T|F|E1=E2|E1≤E2| ...**

- **C** ::=

 - **SKIP**
 - **V := E**
 - **V(E1) := E2**
 - **C1 ; C2**
 - **IF B THEN C1 ELSE C2**
 - **BEGIN VAR V1;...VAR Vn; C END**
 - **WHILE B DO C**
 - **FOR V := E1 UNTIL E2 DO C**

% Expressions
% Arithmetic
% Logic

%Commands:
% empty command (place holder)
% assignment
% array assignment
% sequential execution
% conditional execution
% block command (var. scoping)
% while - loop
% for - loop

FM course, Module II: Deductive verification
Terminology and notations

- **Variable**
 - \(V_1, V_2, \ldots, V_n \)

- **Program state** - valuation of program (and control) variables

- **Command** - gives a rule how the program state changes
 - \(C_1, C_2, \ldots, C_n \)

- **Program** - command that includes all the commands in the algorithm
 - \(C \)

- **Expression**
 - Arithmetic expression gives a value: \(E_1, E_2, \ldots, E_n \)
 - Boolean expression gives a *truth*-value: \(B_1, B_2, \ldots, B_n \)

- **Statement** – logical expression on program variables in the pre- and postconditions of the specification
 - \(S_1, S_2, \ldots, S_n \)
Formal specification

- Describes the intended behaviour of the program
- Specifies what the program must do
- Has well-defined *syntax* and *semantics* that helps avoiding *ambiguous* and *controversial* specifications
- Can be used to prove the *correctness of the program*
- Can be used to generate *tests* and *counterexamples*

We will use formalism that is based on *FHL* and *predicate calculus*
Hoare’s notation

- C.A.R. Hoare introduced the following notation called a *partial correctness specification* for specifying what a program does:

\[\{P\} \ C \ \{Q\} \]

where:

- \(C \) is a program from the programming language whose programs are being specified

- \(P \) and \(Q \) are conditions on the program variables used in \(C \)
Hoare’s notation

- Conditions on program variables will be written using standard mathematical notations together with logical operators like:
 - \land (‘and’), \lor (‘or’), \neg (‘not’), \Rightarrow (‘implies’)

- Hoare’s original notation was $P \{C\} Q$ not $\{P\} C \{Q\}$, but the latter form is now more widely used.
Partial Correctness

- An expression $\{P\} \ C \ \{Q\}$ is called a **partial correctness specification**
 - P is called its **precondition**
 - Q its **postcondition**

- $\{P\} \ C \ \{Q\}$ is true if
 - whenever C is executed in a state satisfying P
 - and if the execution of C **terminates**
 - then the state in which C’s execution terminates satisfies Q
Examples

- \(\{X = 1\} \ Y := X \ \{Y = 1\} \)
 - This says that \textit{if} the command \(Y := X \) is executed in a state satisfying the condition \(X = 1 \)
 - \textit{i.e.} a state in which the value of \(X \) is 1
 - \textit{then}, if the execution terminates (which it does)
 - then the condition \(Y = 1 \) will hold
 - Clearly this specification is true
Examples

- \(\{ X = 1 \} \ Y := X \ \{ Y = 2 \} \)

 - This says that if the execution of \(Y := X \) terminates when started in a state satisfying \(X = 1 \)

 - then \(Y = 2 \) will hold

 - This is clearly false

- \(\{ X = 1 \} \text{ WHILE } T \text{ DO } \text{SKIP } \{ Y = 2 \} \)

 - This specification is true!
Total correctness

- A stronger kind of specification is a total correctness specification
 - There is no standard notation for such specifications
 - We shall use $[P] C [Q]$

- A total correctness specification $[P] C [Q]$ is true if and only if
 - Whenever C is executed in a state satisfying P, then the execution of C terminates
 - After C terminates Q holds
Example

- \([X = 1] \ Y := X; \ \text{WHILE} \ T \ \text{DO} \ \text{SKIP} \ [Y = 1]\)

 - This says that the execution of \(Y := X; \ \text{WHILE} \ T \ \text{DO} \ \text{SKIP}\) terminates when started in a state satisfying \(X = 1\)

 - after which \(Y = 1\) will hold

 - This is clearly false
Total correctness

- Informally:

\[
\text{Total correctness} = \text{Termination} + \text{Partial correctness}
\]

- Total correctness is the ultimate goal
 - usually easier to show partial correctness and termination separately
Total correctness

- Termination is usually straightforward to show, but there are examples where it is not: no one knows whether the program below terminates for all values of x

```plaintext
WHILE $x>1$ DO
  IF ODD($x$) THEN $x := (3 \times x) + 1$ ELSE $x := x \text{ DIV } 2$
- The expression $x \text{ DIV } 2$ evaluates to the result of rounding down $x/2$ to a whole number

- Exercise: Write a specification which is true if and only if the program above terminates
Auxiliary variables in the specification

- \( \{X=x \land Y=y\} \quad R:=X; \quad X:=Y; \quad Y:=R \quad \{X=y \land Y=x\} \)
  
  - This says that \textit{if} the execution of
    \[ R:=X; \quad X:=Y; \quad Y:=R \]
    terminates (which it does)

  - \textit{then} the values of \( X \) and \( Y \) are exchanged

- The variables \( x \) and \( y \), which don’t occur in the command and are used to name the initial values of program variables \( X \) and \( Y \)

- They are called \textit{auxiliary variables}
Examples

- \( \{X=x \land Y=y\} \ \text{BEGIN} \ X:=Y; \ Y:=X \ \text{END} \ \{X=y \land Y=x\} \)
  
  - This says that \text{BEGIN} X:=Y; \ Y:=X \ \text{END} \ exchanges the values of \( X \) and \( Y \)
  
  - This is not true
Examples

- \{T\} C \{Q\}
  - This says that whenever \( C \) halts, \( Q \) holds

- \{P\} C \{T\}
  - This specification is true for every condition \( P \) and every command \( C \)
  - Because \( T \) is always true
Examples

- $[P] \ C \ [T]$
  - This says that $C$ terminates if initially $P$ holds
  - It says nothing about the final state

- $[T] \ C \ [P]$
  - This says that $C$ always terminates and ends in a state where $P$ holds
A more complicated example

```
{\{T\}}
BEGIN
 R:=X;
 Q:=0;
 WHILE Y\leq R DO
 BEGIN R:=R-Y; Q:=Q+1 END
 END
{R < Y \land X = R + (Y \times Q)}
```

- This is \(\{T\} \; C \; \{R < Y \land X = R + (Y \times Q)\}\)

- where \(C\) is the command indicated by the braces above

- The specification is true if whenever the execution of \(C\) halts, then \(Q\) is quotient and \(R\) is the remainder resulting from dividing \(Y\) into \(X\)

- It is true (even if \(X\) is initially negative!)

- In this example a program variable \(Q\) is used. This should not be confused with the \(Q\) used in previous examples to range over postconditions

FM course, Module II: Deductive verification
Some exercises

- When is $[T] C [T]$ true?

- Write a partial correctness specification which is true if and only if the command $C$ has the effect of multiplying the values of $X$ and $Y$ and storing the result in $X$

- Write a specification which is true if the execution of $C$ always halts when execution is started in a state satisfying $P$
 Specication can be Tricky (1)

- “The program must set Y to the maximum of X and Y”
  - \( [T] \ C \ [Y = \max(X, Y)] \)

- A suitable program:
  - IF \( X \geq Y \) THEN \( Y := X \) ELSE SKIP
Specification can be Tricky (2)

\[ T \ C \ [Y = \max(X, Y)] \]

- Another?
  - IF \( X \geq Y \) THEN \( X := Y \) ELSE SKIP

- Or even?
  - \( Y := X \)

- Later you will be able to prove that these programs are "correct"

FM course, Module II: Deductive verification
Specification can be Tricky (3)

- The intended specification was probably not properly captured by

\[ \vdash \{T\} \ C \ \{Y=\max(X,Y)\} \]

- The correct formalisation of what was intended is probably

\[ \vdash \{X=x \land Y=y\} \ C \ \{Y=\max(x,y)\} \]
Specification can be Tricky (4)

The lesson

- It is easy to write the wrong specification!
- A proof system will not help since the incorrect programs could have been proved “correct”
- Testing would have helped!
More Tricky example: Sorting

- Suppose $c_{\text{sort}}$ is a command that is intended to sort the first $n$ elements of an array.

- To specify this formally, let $\text{SORTED}(A, n)$ mean

  $$A(1) \leq A(2) \leq \ldots \leq A(n)$$
Sorting: naive spec

- A first attempt to specify that $c_{sort}$ sorts is

  $$\{1 \leq N\} \ c_{sort} \ \{\text{SORTED}(A,N)\}$$

- Not enough:
  - $\text{SORTED}(A,N)$ can be achieved by simply zeroing the first $N$ elements of $A$
Sorting: permutation required

- It is necessary to require that the sorted array is a rearrangement, or permutation, of the original array.

- To formalise this, let $\text{PERM}(A, A', N)$ mean that $A(1), A(2), \ldots, A(n)$ is a rearrangement of $A'(1), A'(2), \ldots, A'(n)$.

- An improved specification that $C_{sort}$ sorts:

$$\{1 \leq N \land A=a\} \ C_{sort} \ \{\text{SORTED}(A,N) \land \text{PERM}(A,a,N)\}$$
Sorting: still not correct

- The following specification is true

\[
\{1 \leq N\} \\
N := 1 \\
\{\text{SORTED}(A,N) \land \text{PERM}(A,a,N)\}
\]

- Must say explicitly that $N$ is unchanged
Sorting: still not correct

- A better specification is thus:

\[
\{ 1 \leq N \land A = a \land N = n \} \\
C_{\text{sort}} \\
\{ \text{SORTED}(A, N) \land \text{PERM}(A, a, N) \land N = n \}
\]

- Is this the correct specification?
  - What if \( N \) is larger than the size of the array?
Summary

- We have given a notation for specifying
  - partial correctness of programs
  - total correctness of programs
- It is easy to write incorrect specifications
  - and we can prove the correctness of the incorrect programs
- It is recommended to use testing, simulation and formal verification hand in hand.