
Lecture 7:

Introduction to formal specifications

Lecture notes by Mike Gordon are used

FM course, Module II: Deductive verification

Recall some definitions

FM course, Module II: Deductive verification

Introduction

 Verification of programs is based on formal specification and on
related verification method.

 We will use Floyd-Hoare logic (FHL)

 Proof systems of the FHL style depend on particular programming
language with its syntax and semantics

 In this course we will deal with the verification of

 - deterministic sequential while-programs;

 - non-deterministic sequential while-programs

 - parallel programs with shared variables;

 - parallel programs with message passing.

FM course, Module II: Deductive verification

Programs as state transition systems

 Programs are structured specifications of state transition systems.

 Programming language defines constructs for specifying single
transitions and transition compositions.

 State components are referred in conditions of command constructs
like if-, while-, for-, case-command etc.

FM course, Module II: Deductive verification

Some notations

FM course, Module II: Deductive verification

• Programs are built out of commands like assignment, if-, while-, for-,

 case-command etc

• The terms 'program' and 'command' are synonymous.

• 'Program' will only be used for commands representing complete

 algorithm.

• The 'statement' is used for conditions on program variables that occur in

 correctness specifications.

Imperative programs - state

FM course, Module II: Deductive verification

• Executing an imperative program has the effect of

 changing the state

• i.e. the values of program variables

• N.B. languages more complex than those described

in our course may have states consisting of other

things than the values of variables (e.g. I/O).

Imperative programs - execution

FM course, Module II: Deductive verification

• To use an imperative program

• first establish a state,

i.e. set some variables to have values of interest

• then execute the program,

 (to transform the initial state into a final one)

• inspect the values of variables in the final state to get the

result.

Simple while-language

 % Expressions

 E ::= N|V|E1+E2|E1-E2|E1E2| … % Arithmetic

 B ::= T|F|E1=E2|E1E2| … % Logic

 C ::= %Commands:

 SKIP % empty command (place holder)

 | V := E % assignment

 | V(E1) := E2 % array assignment

 | C1 ; C2 % sequential execution

 | IF B THEN C1 ELSE C2 % conditional execution

 | BEGIN VAR V1;…VAR Vn; C END % block command (var. scoping)

 | WHILE B DO C % while - loop

 | FOR V := E1 UNTIL E2 DO C % for - loop

FM course, Module II: Deductive verification

Terminology and notations

 Variable
• V1, V2, ..., Vn

 Program state - valuation of program (and control) variables
 Command - gives a rule how the program state changes

• C1, C2, ... , Cn

 Program - command that includes all the commands in the algorithm
• C

 Expression
• Arithmetic expression gives a value: E1, E2, ... , En

• Boolean expression gives a truth-value: B1, B2, ... , Bn
 Statement – logical expression on program variables in the pre- and

postconditions of the specification
• S1, S2, ... , Sn

FM course, Module II: Deductive verification

Formal specification

 Describes the intended behaviour of the program

 Specifies what the program must do

 Has well-defined synax and semantics

 that helps avoiding ambiguous and controversial specifications

 Can be used to prove the correctness of the program

 Can be used to generate tests and counterexamples

We will use formalism that is based on FHL and predicate calculus

FM course, Module II: Deductive verification

Hoare’s notation

FM course, Module II: Deductive verification

Hoare’s notation

FM course, Module II: Deductive verification

Partial Correctness

FM course, Module II: Deductive verification

Examples

FM course, Module II: Deductive verification

Examples

FM course, Module II: Deductive verification

Total correctness

FM course, Module II: Deductive verification

Example

FM course, Module II: Deductive verification

Total correctness

FM course, Module II: Deductive verification

Total correctness

o

FM course, Module II: Deductive verification

Auxiliary variables in the specification

FM course, Module II: Deductive verification

Examples

FM course, Module II: Deductive verification

Examples

FM course, Module II: Deductive verification

Examples

FM course, Module II: Deductive verification

A more complicated example

FM course, Module II: Deductive verification

Some exercises

FM course, Module II: Deductive verification

Specification can be Tricky (1)

FM course, Module II: Deductive verification

Specification can be Tricky (2)

FM course, Module II: Deductive verification

Specification can be Tricky (3)

FM course, Module II: Deductive verification

Specification can be Tricky (4)

FM course, Module II: Deductive verification

More Tricky example: Sorting

FM course, Module II: Deductive verification

Sorting: naive spec

FM course, Module II: Deductive verification

Sorting: permutation required

FM course, Module II: Deductive verification

Sorting: still not correct

FM course, Module II: Deductive verification

Sorting: still not correct

FM course, Module II: Deductive verification

Summary

 We have given a notation for specifying

 partial correctness of programs

 total correctness of programs

 It is easy to write incorrect specifications

 and we can prove the correctness of the incorrect programs

 It is recommended to use testing, simulation and
formal verification hand in hand.

FM course, Module II: Deductive verification

