Machine Learning
 Markov Chains and Hidden Markov Models

S. Nõmm
${ }^{1}$ Department of Software Science, Tallinn University of Technology

08.05.2018

Modeling sequential data

- Speech recognition
- Machine translation
- Handwriting recognition
- Biological sequences
- Processes originating from the area of business and finance
- Robotics (location of the robot)
- Health monitoring

Sequential processes

- Consider a system with N discrete states. (Some times referred as the system which may occupy one of N states at each time instance t).
- The processes, in which the state evolution is random over time, are called stochastic processes.
- Any joint distribution over sequences of states can be factored according to the chain rule into a product of conditional distributions:

$$
p\left(x_{0}, x_{1}, \ldots, x_{T}\right)=p\left(x_{0}\right) \prod_{t=1}^{T} p\left(x_{t} \mid x_{0}, \ldots, x_{t-1}\right)
$$

Example: language modeling

- What is the probability of a sentence: The cat sat on the mat ?
- According to the chain rule:

$$
\begin{aligned}
& p(\text { The cat sat on the mat })= \\
& p(\text { The }) \times \\
& p(\text { cat } \mid \text { The }) \times \\
& p(\text { sat } \mid \text { The cat }) \times \\
& p(\text { on } \mid \text { The cat sat }) \times \\
& p(\text { the } \mid \text { The cat sat on }) \times \\
& p(\text { mat } \mid \text { The cat sat on the }) \times
\end{aligned}
$$

- Problem: infeasible amount of data necessary to learn all the statistics reliably.

Markov process

- Let us suppose that the future is independent of the past given the present.

$$
p\left(x_{t-1}, x_{t+1} \mid x_{t}\right)=p\left(x_{t-1} \mid x_{t}\right) \cdot p\left(x_{t+1} \mid x_{t}\right)
$$

referred as Markov Assumption

- The processes where the next step depends only on the current state:

$$
p\left(x_{t+1} \mid x_{0}, \ldots, x_{t}\right)=p\left(x_{t+1} \mid x_{t}\right)
$$

are called Markov processes

- Combining the Markov assumption with the chain rule one gets the probability of the whole sequence as:

$$
p\left(x_{0}, x_{1}, \ldots, x_{T}\right)=p\left(x_{0}\right) \prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right)
$$

Language modeling with Markov process

- What is the probability of the sentence The cat sat on the mat?
- according to the Markov assumption and the chain rule:

$$
\begin{aligned}
& p(\text { The cat sat on the mat })= \\
& p(\text { The }) \times \\
& p(\text { cat } \mid \text { The }) \times \\
& p(\text { sat } \mid \text { cat }) \times \\
& p(\text { on } \mid \text { sat }) \times \\
& p(\text { the } \mid \text { on }) \times \\
& p(\text { mat } \mid \text { the }) \times
\end{aligned}
$$

- Obviously one has to estimate much smaller number of the parameters.

Markov Chain

- The sequence generated by a Markov process is called the Markov chain
- Usually it is assumed that the Markov chain is time-invariant or stationary - this means that the probabilities $p\left(x_{t} \mid x_{t-1}\right)$ do not depend on time.
- For example in language modeling the probability p (the \mid on) does not depend on the positions of these words in the sentence.
- This is an example of parameter tying since the parameter is shared by multiple variables

Markov model specification

- A stationary Markov model with N states can be described by an $N \times N$ transition matrix:

$$
Q=\left[\begin{array}{ccc}
q_{11} & \ldots & q_{1 N} \\
\ldots & \ldots & \ldots \\
q_{N 1} & \ldots & q_{N N}
\end{array}\right]
$$

where $q_{i j}=p\left(x_{t}=i \mid x_{t-1}=j\right)$

- Constraints on valid transition matrices:

$$
q_{i j} \geq 0, \quad \sum_{i=1}^{N} q_{i, j}=1, \text { for all } j
$$

State transition diagram

- State transition matrices can be visualized with a state transition diagram
- State transition diagram is a directed graph where arrows represent legal transitions.
- Drawing state transition diagrams is most useful when N is small and Q is sparse.

$$
Q=\left[\begin{array}{ll}
0.4 & 0.6 \\
0.7 & 0.3
\end{array}\right]
$$

Graphical models

- A way of specifying conditional independencies
- Directed graphical model: DAG
- Nodes are random variables
- A node's distribution depends on its parents
- Joint distribution: $p(X)=\prod_{i} p\left(x_{i} \mid\right.$ Parents $\left._{i}\right)$
- A node's value conditional on its parents is independent of other ancestors

Markov chain as a graphical model

$$
p\left(x_{0}, x_{1}, \ldots, x_{T}\right)=p\left(x_{0}\right) \prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right)
$$

- Graph interpretation differs from state transition diagrams:
- Nodes represent state values at particular times
- Edges represent Markov properties
$p\left(x_{0}\right)$

Markov chain training

- Let us assume that training data is given in the form of sequences
- One can count the number of occurrence of any two consecutive values
- For example, we can count how many times occurs the word pair " of the" in the training text.
- For obtaining the quantity p (the \mid of) we have to divide with the number of times the word "of" occurs in the training data:

$$
p(\text { the } \mid \text { of })=\frac{p(\mathrm{of} \text { the })}{p(\mathrm{of})}=\frac{\operatorname{Count}(\mathrm{ot} \text { the })}{\operatorname{Count}(\mathrm{of})}
$$

- In general, if $N_{i, j}$ is the number of times the value i is followed by the value j :

$$
p\left(x_{t}=j \mid x_{t-1}=i\right)=\frac{p\left(x_{t-1}=i, x_{t}=j\right)}{p\left(x_{t-1}=i\right)}=\frac{N_{i, j}}{\sum_{j} N_{i j}}
$$

Markov chain order

- The Markov chain presented in previous slides is called first-order Markov model.
- It is also called bigram model (especially in language modelling)
- The marginal probabilities $p\left(x_{t}\right)$ are called unigram probabilities
- In the unigram model all the variables are independent $p\left(x_{0}, x_{1}, \ldots, x_{T}\right)=\prod_{t} p\left(x_{t}\right)$
- One can also construct higher order Markov chains: a second order model operates with trigrams:

$$
p\left(x_{t} \mid x_{0}, \ldots, x_{t-1}\right)=p\left(x_{t} \mid x_{t-2}, x_{t-1}\right)
$$

Hidden Markov models

- Few realistic sequential processes directly satisfy the Markov assumption.
- Markov chains cannot capture long-range correlations between observations.
- Increasing the order leads the number of parameters to blow up
- This motivates the hidden Markov models (HMM)
- In HMM there is an underlying hidden process that can be modelled with a first-order Markov chain
- The data is the noisy observation of this process.

HMM: handwriting recognition

$x_{0}=\{a . z\} \quad x_{1}=\{a . z\} \quad x_{2}=\{a . z\} \quad x_{3}=\{a . z\} \quad x_{4}=\{a . z\}$
$y_{0}=\frac{b}{b} \quad y_{1}=r \quad y_{2}=d r$

- We can only observe the handwritten character images
- The hidden process models the characters written

HMM specification

$$
\begin{array}{llll}
x_{0}=\{a . . z\} & x_{1}=\{a . z\} & x_{2}=\{a . . z\} & x_{3}=\{a . z\} \\
y_{0}=\boldsymbol{b} & x_{4}=\{a . . z\} \\
y_{1}=\boldsymbol{r} & y_{2}=\boldsymbol{d} & y_{3}=\boldsymbol{C} & y_{4}=\boldsymbol{Q}
\end{array}
$$

There are three distributions:

$$
\begin{aligned}
& p\left(x_{0}\right) \\
& p\left(x_{t} \mid x_{t-1}\right), \quad t=1, \ldots, T \\
& p\left(y_{t} \mid x_{t}\right), \quad t=1, \ldots, T
\end{aligned}
$$

Joint distribution

$$
\left.\begin{array}{llll}
x_{0}=\{\mathrm{a} . . \mathrm{z}\} & \mathrm{x}_{1}=\{\mathrm{a} . \mathrm{z}\} & \mathrm{x}_{2}=\{\mathrm{a} . \mathrm{z}\} & \mathrm{x}_{3}=\{\mathrm{a} . \mathrm{z}\}
\end{array} \quad \mathrm{x}_{4}=\{\mathrm{a} . \mathrm{z}\}\right\}
$$

The joint distribution of the hidden sequence is:

$$
\left.p\left(x_{0}, \ldots, x_{T}\right) \mid y_{0}, \ldots, y_{T}\right) \propto p\left(x_{0}\right) p\left(y_{0} \mid x_{0}\right) \prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right) p\left(y_{t} \mid x_{t}\right)
$$

Inference with HMM

- Compute marginal probabilities of hidden variables
- Filtering - compute the belief states $p\left(x_{t} \mid y_{0}, \ldots, y_{t}\right)$ online
- Smoothing - compute the probabilities $\left(x_{t} \mid y_{0}, \ldots, y_{T}\right)$ offline using all the evidence
- Find the most likely sequence of hidden variables - Viterbi decoding

Filtering

- Computing $p\left(x_{t} \mid y_{0}, \ldots, y_{t}\right)$ is called filtering, because it reduces noise in comparison to computing just $p\left(x_{t} \mid y_{t}\right)$.
- Filtering is done using forward algorithm
- Forward algorithm uses dynamic programming - this means the algorithm is recursive but we reuse the already done computations.

Forward algorithm

Input:

- Transition matrix
- Initial state distribution
- Observation matrix containing probabilities $p\left(y_{t} \mid x_{t}\right)$
- Compute the forward probabilities:

$$
\alpha_{t}\left(x_{t}\right)=p\left(x_{t} \mid y_{1: t}\right)=\frac{1}{Z_{t}} p\left(y_{t} \mid x_{t}\right) \sum_{x_{t-1}} p\left(x_{t} \mid x_{t-1} \alpha_{t-1}\left(x_{t-1}\right)\right)
$$

Smoothing

- Smoothing computes the marginal probabilities $p\left(x_{t} \mid y_{1: T}\right)$ off line, using all the evidence
- It is called smoothing, because conditioning on the past and future data the uncertainty will be significantly reduced.
- Smoothing is performed using forward-backward algorithm.

Forward-backward algorithm

- Break the chain into past and future:

$$
\begin{aligned}
& p\left(x_{t}=j \mid y_{1: T}\right) \propto p\left(x_{t}=j, y_{t+1: T} \mid y_{1: t}\right) \\
& \propto p\left(x_{t}=j \mid y_{1: t}\right) p\left(y_{t+1: T} \mid x_{t}=j\right)
\end{aligned}
$$

- Compute the forward probabilities as before:

$$
\alpha_{t}\left(x_{t}\right)=p\left(x_{t}=j \mid y_{1: t}\right)
$$

- Compute the backward probabilities:

$$
\beta_{t}\left(x_{t}\right)=\frac{1}{Z_{t}} \sum_{x_{t}} p\left(x_{t+1} \mid x_{t}\right) p\left(y_{t+1} \mid x_{t+1}\right) \beta_{t+1}\left(x_{t+1}\right)
$$

Optimal state estimation

- Compute the smoothed posterior marginal probabilities

$$
p\left(x_{t} \mid y_{1: T}\right) \propto \alpha_{t}\left(x_{t}\right) \beta_{t}\left(x_{t}\right)
$$

- Probabilities measure the posterior confidence in the true hidden states
- Takes into account both the past and the future

Optimal sequence estimation

- Viterbi algorithm computes

$$
\hat{x}=\arg \max p\left(x_{0}, \ldots, x_{t} \mid y_{1}, \ldots y_{T}\right)
$$

- Using dynamic programming it finds recursively the probability of the most likely state sequence ending with each x_{t} :

$$
\begin{aligned}
& \gamma_{t}\left(x_{t}\right)=\max _{x_{1}, \ldots, x_{t-1}} p\left(x_{1}, \ldots,, x_{t} \mid y_{1: t}\right) \\
& \propto p\left(y_{t} \mid x_{t}\right)\left[\max _{x_{t-1}} \quad p\left(x_{t} \mid x_{t-1}\right) \gamma_{t-1} x_{t-1}\right]
\end{aligned}
$$

- A backtracking procedure picks then the most likely sequence.

Learning HMM

- Let us suppose the latent state sequence is available during training
- Then the transition matrix, observation matrix and initial state distribution can be estimated by normalized counts

$$
\begin{aligned}
\hat{q}_{i, j} & =\frac{n(i, j)}{\sum_{k} n(k, j)} \\
\tau_{i} & =\left\{t \mid x_{t}=i\right\} \\
\hat{\theta}_{i} & =\frac{1}{\left|\tau_{i}\right|} \sum_{t \in \tau_{i}} y_{t}
\end{aligned}
$$

Learning HMM

- Typically one don't know the hidden state sequences
- EM algorithm is used, it iteratively maximizes the lower bound on the true data likelihood
- E-step: Use current parameters to estimate the state using forward-backward
- M-step: Update the parameters using weighted averages

