1. Write standard prime decomposition of 90 .
2. Write the 6 -adic expansion of 11 .
3. How many elements of \mathbb{Z}_{99} are invertible under multiplication?
4. Express $\operatorname{gcd}(240,46)$ in the form of a Bézout identity.
5. Given the Bézout identity $\operatorname{gcd}(13,6)=13 \cdot 1+6 \cdot(-2)$, find multiplicative inverse of 6 modulo 13.
6. Find multiplicative inverse of 2 modulo 13 using the Euler's formula.
7. Calculate $6^{812} \bmod 13$ using square-and-multiply method. How many multiplications did you use? Describe the algorithm step-by-step.
8. Solve for x :

$$
\left\{\begin{array}{l}
x \equiv 2 \bmod 3 \\
x \equiv 3 \bmod 4
\end{array}\right.
$$

9. Solve for x :

$$
\left\{\begin{array}{l}
x \equiv 1 \bmod 2 \\
x \equiv 2 \bmod 3 \\
x \equiv 3 \bmod 5
\end{array}\right.
$$

10. Prove by induction that for all $n \in \mathbb{N}, n \geqslant 1$:

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

