RSA Cryptosystem

Ahto Buldas Aleksandr Lenin

March 20, 2020

RSA cryptosystem

In 1977, Ronald Rivest, Adi Shamir and Leonard Adleman proposed the following trapdoor cryptosystem:

- Private key: Two large random prime numbers p and q
- Public key: Modulus $n=p \cdot q$

Let $e, d \in \mathbb{Z}_{\varphi(n)}$ such that $e \cdot d \equiv 1(\bmod \varphi(n))$, where $\varphi(n)=(p-1)(q-1)$ is the Euler's function

- Encryption $y=\mathrm{E}_{n, e}(x)=x^{e} \bmod n$
- Decryption $\mathrm{D}_{n, d}(y)=y^{d} \bmod n=x$

Questions

- Are E and D efficiently computable?
- Why does the decryption identity $\mathrm{D}_{n, d}\left(\mathrm{E}_{n, e}(x)\right)=x$ hold?
- How to find large random prime numbers?

Efficient Exponentiation: Square and Multiply

For efficiently computing $x^{e} \bmod n$ we use the binary expansion:

$$
e=e_{m} \cdot 2^{m}+e_{m-1} \cdot 2^{m-1}+\ldots+e_{1} \cdot 2^{1}+e_{0} \cdot 2^{0}
$$

where $e_{m}, \ldots, e_{0} \in\{0,1\}$. We use the following computational scheme:

$$
\begin{aligned}
x^{e_{m} \cdot 2^{m}+\ldots+e_{0} \cdot 2^{0}} & =x^{e_{m} \cdot 2^{m}} \cdot x^{e_{m-1} \cdot 2^{m-1}} \cdot \ldots \cdot x^{e_{0} \cdot 2^{0}} \\
& =\left(x^{2^{m}}\right)^{e_{m}} \cdot\left(x^{2^{m-1}}\right)^{e_{m-1}} \cdot \ldots \cdot\left(x^{2^{0}}\right)^{e_{0}}
\end{aligned}
$$

where the hyper-powers $x^{2^{0}}, \ldots, x^{2^{m}}$ are computed by using repeated squaring

$$
x^{2^{k}}=\left(x^{2^{k-1}}\right)^{2}
$$

Euler's Theorem and Decryption Identity

Theorem (Euler)
If $\operatorname{gcd}(x, n)=1$, then $x^{\varphi(n)} \equiv 1(\bmod n)$.

- We use general group theory to prove Euler's theorem
- By Euler's theorem, if x is invertible modulo n then

$$
\left(x^{e}\right)^{d}=x^{e \cdot d}=x^{1+k \cdot \varphi(n)}=x \cdot\left(x^{\varphi(n)}\right)^{k} \equiv x \cdot 1^{k} \equiv x \quad(\bmod n) .
$$

which means that the decryption identity of RSA holds for invertible x.

- Later, we show that decryption identity also holds for non-invertible x

Exercise: Show that finding a non-invertible x modulo $n=p q$ is equivalent to factoring n.

Groups

Group consists of a set G and a binary operation which is:

- Associative: $a \cdot(b \cdot c)=(a \cdot b) \cdot c$
- With a unit: There is $e \in G$ such that $x \cdot e=e \cdot x=x$ for every $x \in G$
- Invertible: Every $a \in G$ has an inverse $a^{-1} \in G$, such that $a \cdot a^{-1}=e$

Examples:

- $(\mathbb{Z},+)$
- $\left(\mathbb{Z}_{n},+\right)$, where + denotes addition modulo n
$\circ\left(\mathbb{Z}_{n}^{*}, \cdot\right)$, where $\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\}$ and \cdot is multiplication modulo n

Subgroups

A subset $H \subseteq G$ of a group (G, \cdot) is a subgroup if (H, \cdot) is a group.
For example, the set $2 \mathbb{Z}=\{\ldots,-4,-2,0,2,4, \ldots\}$ of even numbers is a subgroup of the additive group $(\mathbb{Z},+)$ of integers.

Exercise: Show that for $H \subseteq G$ being a subgroup of (G, \cdot) it is necessary and sufficient that H is closed under multiplication and inverses.

Exercise: Show that for $H \subseteq G$ being a subgroup of finite (G, \cdot) it is necessary and sufficient that H is closed under multiplication.

Not true for infinite groups: Although the subset $\mathbb{N}=\{0,1,2, \ldots\}$ of \mathbb{Z} is closed under addition, \mathbb{N} is not a subgroup of $(\mathbb{Z},+)$.

Order of an Element of a Finite Group

Theorem (Order)

For any element $g \in G$ of a finite group G there exists $n \in \mathbb{N}$ such that $g^{n}=e$ and $g, g^{2}, g^{3}, \ldots, g^{n}$ are all different. Such n is called the order of g in G and is denoted by ord (g).

Proof.

As G is finite there is $n \in \mathbb{N}$ such that $g^{n+1} \in\left\{g, g^{2}, g^{3}, \ldots, g^{n}\right\}$. Let n be the smallest such number, which also means that $g, g^{2}, g^{3}, \ldots, g^{n}$ are all different. Hence, $g^{n+1}=g$ (and $g^{n}=e$), because if $g^{n+1}=g^{1+k}$ for $0<k<n$, then $g^{n}=g^{k} \in\left\{g, g^{2}, g^{3}, \ldots, g^{n-1}\right\}$, contradicting the minimality of n.

The set $\left\{g, g^{2}, g^{3}, \ldots, g^{n}\right\}$ is a subgroup denoted by $\langle g\rangle$ and called the subgroup generated by g. Note that $|\langle g\rangle|=\operatorname{ord}(g)$ and $g^{\operatorname{ord}(g)}=e$.

Lagrange's Theorem

Theorem (Lagrange)
If H is a subgroup of a finite group G, then $\frac{|G|}{|H|}$ is an integer.

Proof.

Let $H=\left\{h_{1}, \ldots, h_{m}\right\}$. For any $g \in G$, let $g H=\left\{g h_{1}, \ldots, g h_{m}\right\}$, which is called the co-set of g. As H has the unit, $g \in g H$ and hence every $g \in G$ is in a co-set. Note that $e H=H$ and hence H is itself a co-set.

If $g h_{i}=g h_{j}$, then $h_{i}=h_{j}$ and hence all cosets are of equal size $|g H|=|H|$.
If $g H \cap g^{\prime} H \neq \emptyset$, then we have $g H=g^{\prime} H$. Indeed, if $g h_{i}=a=g^{\prime} h_{j}$, then for every k, we have $g h_{k}=g h_{i} h_{i}^{-1} h_{k}=a h_{i}^{-1} h_{k}=g^{\prime} h_{j} h_{i}^{-1} h_{k} \in g^{\prime} H$ and hence $g H \subseteq g^{\prime} H$, which due to $|g H|=\left|g^{\prime} H\right|$ implies $g H=g^{\prime} H$. Therefore, co-sets split G into a finite number of pieces of size $|H|$.

Exponentiation Theorem and Proof of Euler's Theorem

Theorem (Exponentiation)
If G is a finite group and $g \in G$, then $g^{|G|}=e$.

Proof.
From Lagrange's theorem, it follows that $\frac{|G|}{\langle\langle g\rangle|}=k \in \mathbb{N}$ and hence $g^{|G|}=g^{|\langle g\rangle| \cdot k}=\left(g^{|\langle g\rangle|}\right)^{k}=1^{k}=e$.

Corollary (Euler's Theorem)
If $\operatorname{gcd}(x, n)=1$, then $x^{\varphi(n)} \bmod n=1$

Proof.
The set $\mathbb{Z}_{n}^{*}=\left\{x \in \mathbb{Z}_{n}: \operatorname{gcd}(x, n)=1\right\}$ is a group with size $\varphi(n)$.

Fermat's Theorem and Primality Test

Corollary (Fermat's Theorem)
If p is prime and $0<x<p$, then $x^{p-1} \equiv 1(\bmod p)$.

Fermat's primality test (Is n prime?): Pick random $x \leftarrow\{1, \ldots, n-1\}$ and compute $c=x^{n-1} \bmod n$.

- If $c \neq 1$, then by Fermat's theorem, n is not prime
- If $c=1$, then repeat the test
- If test is repeated k times, we stop and claim that n is prime

Question: How reliable is Fermat's test?

Pseudo-Primes to Base b

If n is composite and $b^{n-1} \equiv 1(\bmod n)$, then n is said to be pseudo-prime to base b.
Let $H_{n}=\left\{b: b \in \mathbb{Z}_{n}^{*}, b^{n-1} \equiv 1(\bmod n)\right\}$, i.e. H_{n} is the set of all invertible bases in \mathbb{Z}_{n}-s, to which n is pseudo-prime.

Theorem

H_{n} is a subgroup of the multiplicative group \mathbb{Z}_{n}^{*}.

Proof.

- If $a, b \in H_{n}$, then $(a b)^{n-1} \equiv a^{n-1} \cdot b^{n-1} \equiv 1(\bmod n)$. Hence, $a b \in H_{n}$.
- $1 \in H_{n}$, because $1^{n-1}=1$.
- If $a \in H_{n}$ and $a b \equiv 1(\bmod n)$, then
$b^{n-1} \equiv a^{n-1} \cdot b^{n-1} \equiv(a b)^{n-1} \equiv 1^{n-1} \equiv 1(\bmod n)$.

Carmichael Numbers and the Reliability of Fermat' Test

Definition (Carmichael number) any composite n with $H_{n}=\mathbb{Z}_{n}^{*}$. The smallest Carmichael number is 561 .

Theorem

If n is composite but not a Carmichael number, then $\left|H_{n}\right| \leq \frac{\left|\mathbb{Z}_{n}^{*}\right|}{2}=\frac{\varphi(n)}{2}$.
Proof.
From $H_{n} \neq \mathbb{Z}_{n}^{*}$ and Lagrange's thm.: $1<\frac{\left|\mathbb{Z}_{n}^{*}\right|}{\left|H_{n}\right|} \in \mathbb{N}$. Thus, $\frac{\left|\mathbb{Z}_{n}^{*}\right|}{\left|H_{n}\right|} \geq 2$.
Corollary: For composite but not Carmichael numbers the Fermat's test fails with probability $\leq \frac{1}{2}$ and the k-time test with probability $\leq \frac{1}{2^{k}}$.

How many Carmichael numbers are there?

Theorem (Alford, Granville, Pomerance; 1994)
Let $C(n)$ be the number of Carmichael numbers in the range $[0 \ldots n]$. Then $C(n)>n^{2 / 7}$. Hence, there are infinitely many Carmichael numbers.

Corollary: Fermat's test is not completely trustworthy even for big numbers.

Miller-Rabin's test

- Choose a random $a \leftarrow\{1, \ldots, n-1\}$.
- If $\operatorname{gcd}(a, n) \neq 1$, then output composite.
- Let $n-1=2^{k} \cdot m$, where m is odd.
- If $a^{m} \bmod n=1$ then output prime.
- If $a^{m \cdot 2^{i}} \equiv-1(\bmod n)$ for an $i=0 \ldots k-1$, then output prime.
- Otherwise, output composite.

Theorem

If n is prime, then Miller-Rabin's test outputs prime.
If n is composite, then the test outputs composite with probability $\geq \frac{1}{2}$.

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)
If $\operatorname{gcd}(p, q)=1$ then the rings $\mathbb{Z}_{p q}$ and $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$ are isomorphic.

Proof.

Define $f: \mathbb{Z}_{p q} \rightarrow \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ so that $f(x)=(x \bmod p, x \bmod q)$. Obviously, f preserves the ring operations. As $\left|\mathbb{Z}_{p q}\right|=\left|\mathbb{Z}_{p} \times \mathbb{Z}_{q}\right|$, it remains to show that f is injective. For that, we define a mapping $g: \mathbb{Z}_{p} \times \mathbb{Z}_{q} \rightarrow \mathbb{Z}_{p q}$ so that $g(u, v)=(\alpha p v+\beta q u) \bmod p q$, where $\alpha, \beta \in \mathbb{Z}$ and $\alpha p+\beta q=1$. Therefore, if $x \in \mathbb{Z}_{p q}, x \bmod p=x-k p$, and $x \bmod q=x-\ell q$, then

$$
\begin{aligned}
g(f(x)) & =g(x-k p, x-\ell q)=(\alpha p(x-\ell q)+\beta q(x-k p)) \bmod p q \\
& =(\alpha p x+\beta q x-p q(\alpha \ell+\beta k)) \bmod p q \\
& =(\alpha p x+\beta q x) \bmod p q=x(\alpha p+\beta q) \bmod p q=x
\end{aligned}
$$

Corollary 1: RSA Decryption Identity

Theorem (RSA decryption identity) If $e \cdot d \equiv 1(\bmod \varphi(p q))$, where $p \neq q$ are primes, then for every $x \in \mathbb{Z}_{p q}$:

$$
x^{e d} \equiv x \quad(\bmod p q)
$$

Proof.
As : $\mathbb{Z}_{p q} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q}$, it suffices to prove $(u, v)^{e d}=(u, v)$ in $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$. As $(0,0)^{e d}=(0,0)$, we may assume $u, v>0$. Hence, by Fermat's theorem:

$$
\begin{aligned}
(u, v)^{e d} & =\left(u^{e d} \bmod p, v^{e d} \bmod q\right)=\left(u^{1+k \varphi(p q)} \bmod p, v^{1+k \varphi(p q)} \bmod q\right) \\
& =(u \cdot \underbrace{\left[u^{k(q-1)}\right]^{p-1} \bmod p}_{=1}, v \cdot \underbrace{\left[v^{k(p-1)}\right]^{q-1} \bmod q}_{=1}) \\
& =(u, v)
\end{aligned}
$$

Corollary 2: Solving Equations

If $\operatorname{gcd}(p, q)=1$, then for every $u \in \mathbb{Z}_{p}$ and $v \in \mathbb{Z}_{q}$ the system

$$
\left\{\begin{array}{l}
x \quad \bmod p=u \\
x \quad \bmod q=v
\end{array}\right.
$$

has one and only one solution in the interval $[0,1,2, \ldots, p q-2, p q-1]$.
Example. Find all solutions x in the interval $[0 \ldots 20]$:

$$
\begin{cases}x \equiv 2 & (\bmod 3) \\ x \equiv 6 & (\bmod 7) .\end{cases}
$$

Solution. As $(-2) \cdot 3+1 \cdot 7=1$, from the proof of Chinese Remainder theorem, it follows that $x \equiv 7 \cdot 2+(-2) \cdot 3 \cdot 6 \equiv 20(\bmod 21)$, which implies that $x=20$ is the only solution in [0...20].

Corollary 3: Square Roots of 1

Theorem

If p, q are primes such that $3 \leq p<q$, then the unit $1 \in \mathbb{Z}_{p q}$ has exactly 4 different square roots.

Proof.

It is sufficient to show that the equation $(u, v)^{2}=(1,1)$ has four solutions $(u, v) \in \mathbb{Z}_{p} \times \mathbb{Z}_{q}$. This equation is equivalent to the next pair of equations: $u^{2} \bmod p=1$ and $v^{2} \bmod q=1$. Both have exactly two solutions. Indeed, the first equation is equivalent to $(u-1)(u+1) \bmod p=0$, which implies either $p \mid u-1$ or $p \mid u+1$. In the first case $u-1=k p$, which means $u=1$, and in the second case, $u+1=k p$ which means $u=p-1$. As $p>2$, we never have $1=p-1$ and hence these two solutions are different. As both equations have two independent solutions, there are 4 combinations of the solutions everyone being a solution of $(u, v)^{2}=1$.

Properties of Carmichael Numbers

Theorem
Carmichael numbers are odd.

Proof.
Let n be an even Carmichael number. As n is composite, we conclude that $n \geq 4$. Clearly $n-1 \in \mathbb{Z}_{n}^{*}$ but

$$
(n-1)^{n-1}=\underbrace{(-1)^{n-1}}_{=-1}+\underbrace{(\bmod n)}_{\equiv 0\binom{n-1}{1} n(-1)^{n-2}+\ldots+\binom{n-1}{n-1} n^{n-1}(-1)^{0}}
$$

Hence, $(n-1)^{n-1} \bmod n=(-1)^{n-1} \bmod n=n-1 \neq 1$, because $n-1$ is odd and $n-1 \geq 3$. A contradiction.

Properties of Carmichael Numbers

Theorem

Carmichael numbers are square-free (not divisible by p^{2} for any prime p).

Proof.

Let $n=p^{k} m$ (where $k \geq 2$) be a Carmichael number, where p does not divide m. If $m=1$, let $b=p+1$. If $m \geq 3$, let $b \in \mathbb{Z}_{n}$ be such that

$$
\begin{align*}
b & \equiv 1+p\left(\bmod p^{2}\right) \tag{1}\\
b & \equiv 1(\bmod m) \tag{2}
\end{align*}
$$

In both cases $p^{2} \mid b-(p+1)$. Thus, p does not divide b. Also, $\operatorname{gcd}(b, m)=1$ (from (2)). Hence, $\operatorname{gcd}(b, n)=1$ and $b \in \mathbb{Z}_{n}^{*}$. Note that $b^{n-1} \equiv(1+p)^{n-1} \equiv 1+(n-1) p\left(\bmod p^{2}\right)$ and $(n-1) p$ is not divisible by p^{2} (as p does not divide $n-1=p^{k} m-1$). Thus, $b^{n-1} \bmod p^{2} \neq 1$, which (as $k \geq 2$) also implies $b^{n-1} \bmod n=b^{n-1} \bmod p^{k} m \neq 1$.

Correctness of the Miller-Rabin's Test

Theorem

If n is prime, then the Miller-Rabin's test outputs prime.

Proof.

If $n-1=2^{k} \cdot m$ and m is odd, then for any $a \in\{1, \ldots, n-1\}$ either

- $a^{m} \equiv 1(\bmod n)$ (and the test outputs prime), or
- $a^{m} \not \equiv 1(\bmod n)$, which by $a^{n-1} \equiv 1(\bmod n)$ (Fermat's theorem!) implies the existence of $i \in\{1, \ldots, k-1\}$ such that $a^{2^{i} m} \bmod n \neq 1$ and $a^{2^{i+1} m} \bmod n=1$. Hence, $a^{2^{i} m} \equiv-1(\bmod n)$, because otherwise $b=a^{2^{i} m} \bmod n$ would be a non-trivial $\sqrt{1}$ modulo n, which does not exist if n is prime. Hence, also in the second case, the test outputs prime

Correctness of the Miller-Rabin's Test

Theorem
If n is composite and not a Carmichael number, then the Miller-Rabin's test outputs composite with probability at least $\frac{1}{2}$.

Proof.
By the properties of Fermat's test, $a^{n-1} \not \equiv 1(\bmod n)$ for at least a half of possible values of a. For such values of a we have $a^{m} \not \equiv 1(\bmod n)$ and $a^{m 2^{i}} \not \equiv-1(\bmod n)$ for any $0 \leq i<k$ and thereby the Miller-Rabin's test outputs composite.

Correctness of the Miller-Rabin's Test

Theorem

For Carmichael numbers the Miller-Rabin's test answers composite with probability at least $\frac{1}{2}$.

Proof. Let n be a Carmichael number, $n-1=2^{k} \cdot m$ and m be odd. Let $t=\max \left\{0 \leq i<k \mid \exists a \in \mathbb{Z}_{n}^{*}: a^{2^{i} m} \equiv-1(\bmod n)\right\}$. There is such a t because $(-1)^{2^{0} m}=(-1)^{m} \equiv-1$. If $t^{\prime}>t$, there is no $a \in \mathbb{Z}_{n}^{*}$ such that $a^{2^{t^{\prime}} m} \equiv-1(\bmod n)$. Let

$$
B_{t}=\left\{a \in \mathbb{Z}_{n}^{*}: a^{2^{t} m} \equiv \pm 1 \quad(\bmod n)\right\}
$$

This set is not empty because there exists $a \in \mathbb{Z}_{n}^{*}$ such that $a^{2^{t} m} \equiv-1$ $(\bmod n)$. If $b \notin B_{t}$ then for such b, the Miller-Rabin's test outputs composite because none of the powers $b^{2^{t+1} m}, \ldots, b^{2^{k} m}$ is $\equiv-1$.

Proof continues ...

Let $p \geq 3$ be the smallest prime such that $p \mid n$. As $p^{2} \nmid n$, we have $n=p d$ and $\operatorname{gcd}(p, d)=1$. Let $a^{2^{t} m} \equiv-1(\bmod n)$ and $b \in \mathbb{Z}_{n}$ be such that

$$
\begin{array}{ll}
b \equiv a & (\bmod p) \\
b \equiv 1 & (\bmod d) .
\end{array}
$$

As both a and 1 are invertible, then so is $b \in \mathbb{Z}_{n}^{*}$. At the same time:

$$
\begin{aligned}
b^{2^{t} m} & \equiv a^{2^{t} m} \equiv-1 \quad(\bmod p) \\
b^{2^{t} m} & \equiv 1^{2^{t} m} \equiv+1 \quad(\bmod d) .
\end{aligned}
$$

This implies that $b^{2^{t} m} \not \equiv \pm 1(\bmod n)$ and hence $b \notin B_{t}$. It is easy to verify that B_{t} is a subgroup of \mathbb{Z}_{n}^{*} and hence, by the Lagrange's theorem, $\frac{\left|B_{t}\right|}{\left|\mathbb{Z}_{n}^{*}\right|} \leq \frac{1}{2}$.

