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Generative approach versus Discriminative approach

I Generative approach - create a model of the form p(y,x) and
then derive p(y | x).

I Discriminative approach - fit the model of the form p(y | x)
directly.



Logistic regression

I Linear regression model p(y | x;θ) = N (y | µ(x))
I Replace Gaussian distribution for y with a Bernoulli

distribution (more appropriate for the binary response)

p(y | x,θ) = Ber(y | µ(x))

where µ(x) = E[y | x] = p(y = 1 | x).
I Ensure that 0 ≤ µ(x) ≤ 1 by

µ(x) = sigm(θTx)

where sigm(η) is the sigmoid or logistic or logit function:

µ(x) =
1

1 + e−η
=

eη

eη + 1

I

p(y | x,θ) = Ber(y | sigm(θTx))



Some important properties

I For the logistic function

g(η) =
1

1 + e−η

g(η) = 0.5 if η = 0

g(η) > 0.5 if η > 0

g(η) < 0.5 if η < 0

I Derivative of the logistic function

g′(η) = g(η)(1− g(η))



Probabilistic interpretation

I Let us compute the probabilities of y = 1 and y = 0

P (y = 1 | x,θ) = sigm(θTx)

P (y = 0 | x,θ) = 1− sigm(θTx)

Could you write this statement in a more compact form?

P (y | x,θ) =?

I The meaning of θTx

g(θTx) =
eθ

Tx

1 + eθTx

after the straight but tedious calculations one gets

θTx = log
g(θTx)

1− g(θTx)

here and after referred as log -odds, probability of event
occurring is divided by the probability of not occurring.



Example

Denote xi to be the SAT score of the student i and yi is whether
they passed or failed a class.

p(yi = 1 | xiw) = sigm(ω0 + ω1xi)
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Likelihood

I Likelihood of the parameters (probability of the entire data
set)

L(θ) = P (Y |X;θ) =

m∏
i=1

(sigm(θTx))yi(1− sigm(θTx))1−yi

I We use log- likelihood which leads:

`(θ) = logL(θ)

= log

m∏
i=1

(sigm(θTx))yi(1− sigm(θTx))1−yi

=

m∑
i=1

(
yi log sigm(θTxi) + (1− yi) log(1− sigm(θTxi))

)



Likelihood maximization

I Gradient descent to minimize the negative log-likelihood.
Update step:

θk+1
j = θkj − α

∂

∂θkj
`(θ)

I Gradient ascent to maximize log likelihood. Update step:

θk+1
j = θkj + α

∂

∂θkj
`(θ)

I By derivation the log -likelihood one gets the gradient ascend
update for the logistic regression:

θk+1
j = θ − jk + α

m∑
i=1

(yi − sigm(θTxi))xi,j

simultaneously for each θj , j = 0, . . . n.



MLE
I Let us remind that logistic regression corresponds to the

following binary classification model

p(y | x,θ) = Ber(y | sigm(θTx))

I Negative log-likelihood for logistic regression

NLL(θ) = −
N∑
i=1

log
[
µ
1(yi=1)
i × (1− µi)1(yi=0)

]
= −

N∑
i=1

[
yi logµi + (1− yi) log(1− µi)

]
I Suppose ỹi ∈ {−1, 1} (instead of yi ∈ {0, 1}), then

p(y = 1) =
1

1 + e−θTx
; p(y = −1) =

1

1 + eθTx

leads

NLL(θ) =

N∑
i=1

log(1 + e−ỹθ
T xi)



MLE

NLL(θ) =

N∑
i=1

log(1 + e−ỹθ
T xi)

Gradient and Hessian are given by

g =
d

dθ
f(θ) =

∑
i

(µi − yi)xi = XT (µ− y)

H =
d

dθ
g(θ)T =

∑
i

µi(1− µi)xixTi = XTSX

where S = diag(µi)(1− µi).
H is positive define ⇒ NLL is convex and therefore has a unique
minimum.



Gradient descent / Steepest descend
I Simplest algorithm for unconstrained optimization

θk+1 = θk − ηkgk

where ηk is referred as the step size or learning rate. Main
question is how to set the value of ηk such, that the method
will converge to a local optimum irrespective from the initial
point. Such property is called Global convergence

I According to Taylor’s theorem:

f(θ + ηd) ≈ f(θ + ηgTd)

where d is the descend direction. If η is small enough then
f(θ + ηd) < f(θ).

I If η is too small execution may become to slow and/or
minimum may not be necessarily reached.

I Line minimization or Line search, Let us choose η such that it
would minimize

φ(η) = f(θk + ηdk)



Gradient descent / Steepest descend

I Zig-zaging effect: Exact line search satisfies

ηk = arg minη>0φ(η)

Necessary condition for the optimum is φ′(η) = 0.
φ′(η) = dT g where g = f ′(θ + ηd). Therefore one either have
g = 0 or g ⊥ d.

I To reduce zig-zaging add a momentum term, (θk − θk−1):

θk+1 = θk − ηkgk + µk(θk − θk−1)

where 0 ≤ µk ≤ 1. This method is frequently referred as
heavy ball method



Example Gradient descent

Let us consider convex function f(θ) = 0.5(θ2
1− θ2)2 + 0.5(θ1−1)2

Stat from the point (0, 0)
step size 0.1
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Newton’s method

Algorithm:

1. Initialize θ0;

2. k=0;

3. Until converge do

4. k=k+1;

5. Evaluate gk = ∇f(θk);

6. Evaluate Hk = ∇2f(θk);

7. Solve Hkdk = −gk for dk;

8. Use line search to find step size ηk along dk

9. θk+1 = θk + ηkdk

10. end until



Newton’s method based techniques

I Iteratively reweighted least squares (IRLS). Applies Newton’s
algorithm to find MLE for binary logistic regression.

I Quasi- Newton (variable metric) methods. Replaces H by its
approximation which is updated on each iteration.



`2 regularization

I Let us suppose that the data is linearly separable.

I MLE solution is obtained when ‖θ‖ → ∞
I Logistic sigmoid function approach Heaviside step function

and each point will be classified as 0 or 1 with probability 1.
Such solution will not generalize well.

I `2 regularization: Objective, gradient and Hessian are given
by:-

f ′(θ) = NLL(θ) + λθTθ

g′(θ) = g(θ) + λθ

H ′(θ) = H(θ) + λI



Online learning

I Estimates are updated as new observation point(s) arrives
(becomes available). On each step the learner must respond
with a parameter estimate.

I Regret minimization : The objective used in online learning is
the regret, which is the averaged loss incurred.

I Stochastic optimization and risk minimization: The objective
is to minimize expected loss



Regret minimization

I The objective used in online learning is the regret, which is
the averaged loss incurred.

regretk =
1

k

∑
t

= 1kf(θt, zt)−min
θ∗
∈ Θ

1

k

k∑
t=1

f(θ∗, zt)

I Online gradient descend

θk+1 = projΘ(θk − ηkgk)

where projν(v) = arg minθ∈Θ‖θ − v‖2



Stochastic optimization and risk minimization:

I The objective is to minimize expected loss

f(θ) = E[f(θ, z)]

where the expectation is taken over future data.

I Stochastic gradient descent (SGD). Running average:

θ̄k =
1

k

k∑
t=1

θt

which may be implemented recursively as follows:

θ̄k = θ̄k−1 −
1

k
(θ̄k−1 − θ̄k)

I Step size

I Pre -parameter step size



The LMS algorithm

I Compute MLE for linear regression is an online manner

I The online gradient at iteration k is given by

gk = xi(θ
T
k xi − yi)

where i = i(k) is the training example used at iteration k

I θ update
θk+1 = θk − ηk(ŷk − yk)xk



The perceptron algorithm

The goal is to fit a binary logistic regression model in an online
manner

1. Input: Linearly separable data set xi ∈ RD, yi ∈ {−1, 1};
2. Initialize θ0;

3. k = 0 ;

4. repeat

5. k = k + 1;

6. i = k|N (k mod N);

7. if ŷy 6= yi then

8. θk + 1 = θk + yixi;

9. else

10. do nothing

11. end

12. until converged



The perceptron algorithm

I Will converge provided the data is linearly separable.

I First machine learning algorithm ever derived.


