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Generative approach versus Discriminative approach

» Generative approach - create a model of the form p(y,x) and

then derive p(y | o).
» Discriminative approach - fit the model of the form p(y | )

directly.



Logistic regression

» Linear regression model p(y | ;0) = N (y | u(x))
» Replace Gaussian distribution for y with a Bernoulli
distribution (more appropriate for the binary response)

Py | ®,6) = Ber(y | p(x))
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where p(x) =E[y | 2] =
» Ensure that 0 < p(x) <
p(zx) = sigm(87 )

where sigm(n) is the sigmoid or logistic or logit function
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p(y | ©,6) = Ber(y | sigm(8” x))



Some important properties

» For the logistic function

g(n)=0.5 if n=0
gn)>05 if n>0
gn) <05 if n<o0

» Derivative of the logistic function

g'(n) =g —g(n))



Probabilistic interpretation

> Let us compute the probabilities of y =1 and y =0

Ply=1|,0) = sigm(8Tx)
Ply=0|x,0) = 1—sigm(@7x)

Could you write this statement in a more compact form?

Py |z 6) ="
» The meaning of 87«
0Tz
e
o0 =
after the straight but tedious calculations one gets
9(8"x)
o7 = log———=—
A ST D)

here and after referred as log -odds, probability of event
occurring is divided by the probability of not occurring.



Example

Denote x; to be the SAT score of the student ¢ and y; is whether
they passed or failed a class.

p(y; = 1| z;w) = sigm(wp + wix;)
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Likelihood

» Likelihood of the parameters (probability of the entire data
set)

m

L£O)=PY |X;0)= H(sigm(HTa:))yi(l —sigm(0Tx)) ¥
i=1

> We use log- likelihood which leads:
0(0) =log L(0)

= log H(sigm(@Taz))yi (1 — sigm(6Tx))L =¥
i=1

Z y; log sigm( 0 x;) + (1 —y;)log(1 — sigm(GT:UZ-)))



Likelihood maximization

» Gradient descent to minimize the negative log-likelihood.
Update step:
0
k+1 _ gk _

» Gradient ascent to maximize log |Ike|IhOOd. Update step:

0
k+1 k

» By derivation the log -likelihood one gets the gradient ascend
update for the logistic regression:

9?“ —jJ —i—az y; — sigm( 0 xi))xi

simultaneously for each ;, j=0,...n.



MLE

» Let us remind that logistic regression corresponds to the
following binary classification model

p(y | =, 0) = Ber(y | sigm(6”x))

> Negative Iog—likelihood for logistic regression

Nﬁﬁ = _Zlog [MZ Yyi= (1 — L )1(%:0)}

— —Z: [yi log i + (1 — ;) log(1 — Mz)}

» Suppose g; € {—1,1} (instead of y; € {0,1}), then
1

1
ply=1)=——7; P(yz—l)zm

1+e
leads

NLL(O Zlog 1+e 90" i)

=1



MLE

N
NLLO) = log(1 + 770" ™)
i=1

Gradient and Hessian are given by
d T
g = 5f(0 )—Z(u'—yi)xi = X" (p—y)

_ T
H = deg Zuz — pi)rirl = XTSX

where S = diag(p;)(1 — ;).
H is positive define = N LL is convex and therefore has a unique
minimum.



Gradient descent / Steepest descend

» Simplest algorithm for unconstrained optimization

0141 = 0, — Mgk

where 1, is referred as the step size or learning rate. Main
question is how to set the value of 7 such, that the method
will converge to a local optimum irrespective from the initial
point. Such property is called Global convergence

» According to Taylor's theorem:

f(8+nd) ~ f(6+ng"d)

where d is the descend direction. If 7 is small enough then
f(O0+nd) < f(6).

» If 1 is too small execution may become to slow and/or
minimum may not be necessarily reached.

» Line minimization or Line search, Let us choose 7 such that it
would minimize

¢(n) = f(Ok + ndi)



Gradient descent / Steepest descend

» Zig-zaging effect. Exact line search satisfies
Nk = arg min, - oP(n)

Necessary condition for the optimum is ¢'(n) = 0.
#'(n) = d¥'g where g = f/(6 + nd). Therefore one either have

g=0orgld.
» To reduce zig-zaging add a momentum term, (0 — 0;_1):

Ort1 = O — Mgy + (O — Op—1)

where 0 < pg < 1. This method is frequently referred as
heavy ball method



Example Gradient descent

Let us consider convex function f(8) = 0.5(6% — )+ 0.5(0; — 1)?
Stat from the point (0,0)

step size 0.1 step size 0.6

h L pH i),
02 04 06 08 1 12 14 16 18
exact line search

02 04 06 08 1 12



Newton's method

Algorithm:
1. Initialize O;
2. k=0;
3. Until converge do
4. k=k+1;
5. Evaluate g, = V f(0%);
6. Evaluate Hy, = V2£(60y);
7. Solve Hdy = —gy for d;
8. Use line search to find step size 7 along dy,

9. Oy =0 +mpdy
10. end until



Newton's method based techniques

> lteratively reweighted least squares (IRLS). Applies Newton's
algorithm to find MLE for binary logistic regression.

» Quasi- Newton (variable metric) methods. Replaces H by its
approximation which is updated on each iteration.



{5 regularization

> Let us suppose that the data is linearly separable.
» MLE solution is obtained when ||@| — oo

» Logistic sigmoid function approach Heaviside step function
and each point will be classified as 0 or 1 with probability 1.
Such solution will not generalize well.

» /(o regularization: Objective, gradient and Hessian are given
by:-

(@ = NLL(O)+26T6

g0) = g0)+0
H'(0) = H(0)+



Online learning

» Estimates are updated as new observation point(s) arrives
(becomes available). On each step the learner must respond
with a parameter estimate.

» Regret minimization : The objective used in online learning is
the regret, which is the averaged loss incurred.

» Stochastic optimization and risk minimization: The objective
is to minimize expected loss



Regret minimization

» The objective used in online learning is the regret, which is
the averaged loss incurred.

k
1 . 1
regret, = - Z =1%f(6;, z;) — min € GE Zf(e*, zt)

t =1

» Online gradient descend

011 = projo (0r — Migy)

where proj, (v) = arg mingcg||@ — v||2



Stochastic optimization and risk minimization:

» The objective is to minimize expected loss

where the expectation is taken over future data.

» Stochastic gradient descent (SGD). Running average:

k
>,
t=1

which may be implemented recursively as follows:

0 =

=

o 1 - _
0, =0r_1 — %(ek—l —6;)

> Step size

» Pre -parameter step size



The LMS algorithm

» Compute MLE for linear regression is an online manner

» The online gradient at iteration k is given by
8k = fﬁi(ogfﬂz' — Yi)

where i = i(k) is the training example used at iteration k

» 60 update
01 = Ok — eIk — Yr) Tk



The perceptron algorithm

The goal is to fit a binary logistic regression model in an online
manner

[

. Input: Linearly separable data set z; € R”, y; € {—1,1};
2. Initialize 6y;

3. k=0;

4. repeat

5 k=k+1;

6. ¢=k|N (k mod N);
7 if §y # y; then

8 0L+ 1 =0+ y;x;;
9 else

10. do nothing

11. end

12. until converged



The perceptron algorithm

» Will converge provided the data is linearly separable.

» First machine learning algorithm ever derived.



