
Lecture 3
Module I: Model Checking
Topic: Property specification in

Temporal Logic CTL*

J.Vain

10.02.2022

1

Brushup: Model Checking

M ⊨ P ?

Given:
• M – model

• P – property to be checked on the model M

• ⊨ – satisfiability relation („M satisfies P“)

Goal: Check if M satisfies P

If M ⊨ P, it is said in logic that M is a model of formula P

2

Our model is Kripke Structure (KS)

• Formally:

KS is tuple (S, S0, L, R) over a set of atomic propositions (AP) where
• S set of symbolic states (a symbolic state encodes a set of explicit states)

• S0 is an initial state

• L is a labeling function: S  2AP

• R is the transition relation: R  S x S

• KS is a state-transition system that captures:
• what is true in a state (labeling of the states with APs)

• what can be viewed as an atomic move (denoted as state transition)

• the succession of states (paths on the model graph)

• KS is a static representation that can be unfolded to a tree of execution
traces on which temporal properties are verified.

3

Representing transition as formula

• In Kripke structure, transition (s, s’) ∈ R corresponds to one step of
program execution.

• Suppose a program has two steps

• x := (x+1) mod 3;

• y := (y+1) mod 3.

• Then
R = {R1, R2}

• R1 : (x’ = (x+1) mod 3) ∧ (y’ = y)

• R2 : (y’ = (y+1) mod 3) ∧ (x’ = x)

4

x:=(x+1)mod 3

y:=(y+1)mod 3

Consecutive States

• State space S:

We can restrict our attention to pairs of consecutive states s = (x, y) and
s’=(x’, y’) in the state space {0, 1, 2}  {0, 1, 2}, i.e.

(s, s’)  {0, 1, 2}  {0, 1, 2}

• Question: Can we construct a logic formula that describes the relation
between any two consecutive states s and s’?

• Assume each pair of consecutive states is an instance of R, e.g. in set
notation we have R = {R1, R2} and in logic notation R  (R1 \/ R2)

5

Set of transitions is represented by R1 ∨ R2

6

1,0

2,1

0,0

1,1

2,2 0,2

By connecting pairs
of consecutive states
we get execution
paths of KS

R1

R2

R1

R2

R1

R2

Representing transitions (revisited II)

• In Kripke structure, a transition (s, s’) ∈ R corresponds to one step of
program execution.

• For instance, if a program P has two commands
• x := (x+1) mod 3;

• y := (y+1) mod 3;

• then for the whole program we have transition relation R

R ≡ ((x’ = x+1 mod 3) ∧ y’ = y)  ((y’ = y+1 mod 3) ∧ x’=x)

• (s, s’) that satisfies R means that from state s we can get to s’ by some step
of execution that satisfies R.

7

A ‘giant’ R

• Now we can compute R for the whole program
• then we will know whether any of states is one-step reachable from

some other

• Convenient, but globally we loose information:
e.g., the order in which the statements are executed

• Comment:
• without ordering, the disjuncts in R have not clear precedence

information!

8

Introducing program counter

• In the computer, the order of executing commands is controlled by
program counters.

• We introduce an auxilliary variable pc (for programm counter), and
assume the commands in program are labeled with l0,… ,ln.

• For instance
• In the program:

• l0: x := x+1;

• l1: y := x+1;

• l2: …

• The effect of executing commands is represented in logic:
• R1 : x’= x+1 ∧ y’=y ∧ pc = l0 ∧ pc’= l1

• R2 : y’= y+1 ∧ x’=x ∧ pc =l1∧ pc’= l2

Now we have complete symbolic representation of program execution in
our computation model M!

9

Brushup: Model Checking

M ⊨ P ?

Given:
• M – model
• P – property to be checked on the model M
• ⊨ – satisfiability relation („M satisfies P“)

Goal: Check if M satisfies P

If M ⊨ P it is said in logic that M is a model of formula P

We have seen how M is constructed symbolically

How to express P in logic?

10

Temporal logic CTL*

• Let’s start with semantics
KS and its logic representation provide us static model of program

execution

11

S1 S2

S3 S4

Dynamic model of program execution is
unfolding of the static model

2 options of unfolding to define operational semantics:

Branching time: tree structure Linear time: traces

12

S1

S4

S1

S2

S3

S2 S4

Is a formula valid in given node
(e.g. in S2), which is the root of a
subtree?

Is a formula valid along a
given path starting from
node S1?

S1

S4

S1

S2

S3

S1

S2

S1

S2

S1

S2

S1

S4

CTL* (Computation Tree Logic)

• CTL* covers both branching time and linear time
interpretations

• Syntax:
• FOL

+

• Temporal Operators
• X: neXt

• F: Future (denoted as  in Uppaal)

• G: Global (denoted as [] in Uppaal)

• U: Until

• R: Release

13

CTL* state formulas and path formulas

• State formulas (are interpreted in states)

• express properties of states

• use path quantifiers:

• A – for all paths (starting from a state),

• E – for some paths (starting from a state)

• Path formulas (are interpreted on paths)

• expess properties of paths

• use state quantifiers:

• G – for all states (of the path)

• F – for some state (of the path)

14

State Formulas (1)

• Atomic propositions are state formulas:

• If p ∈ AP, then p is a state formula
• Examples: x > 0, odd(y), …

• Propositional combinations of state formulas:

• ¬ ,  ∨,  ∧ …
• Examples:

• x > 0 \/ odd(y),

• req  (AF ack) where
• “A” is a path quantifier

• “F ack” is a path formula

• “AF ack” is a state formula (interpreted in a state)

15

State Formulas (2)

• Quantifiers A and E make from a path formula a state formula
that is interpreted in the scope of A and E.

• E , where  is a formula, which expresses property of a path

• E means “there exists a path”

• E  -  is true on some paths starting from this state on.

• A 
• A means “for all paths“

• A  -  is true on all paths starting from this state.

16

Forms of Path Formulas

• A state formula 
•  is true in the first state of the path that satisfies path formula

prefixed by 

• For path formulas  and , the path formulas are also:

• ¬ ,  ∨,  ∧

• X , F, G ,  U,  R

• X – in the next state

• F – eventually

• G – globally

• U – until

• R – releases

17

Path Formulas (I): Next-operaator X

X , where  is a path formula, meaning
•  is valid in the suffix of this path (path minus the first

state)

Head of the path

States:

-  is true

-  can be either true or false in other states

18

Suffix of the path

Head of suffix

Path Formulas II: Eventually-operator

F :
 is valid in some state of this path

-  is false

-  is true

- after being true  can be either true or false

19

Head of path

Path Formulas (III): Globally-operator

• G 
•  is valid for head and every suffix of this path

20

Head of path

- state where  is true

Path Formulas IV: Until-operaator (weak)

•  U is true on the path iff

• If  is true in some state of the path

• then in all states before this state  must be true

• Weak until is true also on paths without states where  is true

• For strong until the occurence of state where  is true is required

21

-  is true

- is true

- and  are either true or false

Path Formulas (V): Release-operator

 R
•  has to be true until and including the point where  becomes

true; if  never becomes true then  must remain true forever
1)

2)

22

-  is true

-  is true

-  can be either true or false

 never gets true

Formal semantics of CTL* (1)

• Formal semantics defines the validity of formulas in mathematically
rigorous way.

• Notations

⊨ - satisfiability relation between formula and model:

• M, s ⊨  iff  holds in the state s of model M

• M, π ⊨  iff  holds along the path π in M

• πi : i-th suffix of π,

• e.g. for path π = s0, s1, s2, …, π1 = s1, s2, …

23

Semantics of CTL* (2)

• Path formulas are interpreted on paths:

• M, π ⊨ 

• M, π ⊨ X 

• M, π ⊨ F 

• M, π ⊨  U

24

Semantics of CTL* (3)

• State formulas are interpreted over a set of states (of a path)

• M, s ⊨ p

• M, s ⊨ ¬ 

• M, s ⊨ E 

• M, s ⊨A 

25

CTL is special case of CTL*

• Quantifiers over paths
• A  – All:  is true for all paths starting from the current state.
• E  – Exists: there exists at least one path starting from the current

state where  is true.

• In CTL, path formulas can occur only when paired with A or E , i.e. one
state operator followed by a path operator.

if  and  are state formulas, then
• X , (next)

• F , (eventually)

• G , (globally)

•  U, (until)

•  R (release)

are path formulas

26

LTL is special case of CTL

• LTL contains only path formulas

Path formulas:
• If p ∈ AP, then p is a path formula
• If  and  are path formulas, then

• ¬
•  ∨
•  ∧
• X 
• F 
• G 
•  U
•  R

are also path formulas.

27

CTL vs. CTL*

• CTL*, CTL and LTL have different expressive powers:

• Example:
• In CTL there is no formula equivalent to LTL formula A(FG p).

• In LTL there is no formula equivalent to CTL formula AG(EF p).

• A(FG p)  AG(EF p) is a CTL* formula that cannot be expressed neither in
CTL nor in LTL.

• We use in our course CTL!

28

Minimal set of CTL temporal operators

• CTL has some redundancy to make expressions more compact and
better readable

• All CTL operators can be expressed using a minimal set of temporal
operators {EU, EF, EG} and propositional connectives ¬, ∨

• Following equivalences are used for mapping temporal operators to
minimal set of temporal operators {EU, EF, EG}:

• EF   E [true U ] (because F   [true U ])

• AX   ¬ EX(¬ )

• AG   ¬ EF(¬ )  ¬ E [true U ¬]

• AF   A [true U ]  ¬ EG ¬ 

• A[ U]  ¬(E[(¬ ) U ¬( ∨ )] ∨ EG (¬))

29

strong until

Recap

• CTL* is general temporal logic that offers strong expressive power, more
than CTL and LTL separately.

• CTL and LTL are practically useful, they are easier to interpret than CTL*

• CTL* helps to understand the relations between LTL and CTL.

• In the next lecture we will show how to check satisfiability of CTL
formulas on Kripke structure.

30

