Lecture 3

Module I: Model Checking

Topic: Property specification in
Temporal Logic CTL*

JVain
10.02.2022

Brushup: Model Checking

MEP?

Given:
* M — model
P —property to be checked on the model M
» = —satisfiability relation (,, M satisfies P*)

Goal: Check if M satisfies P

If M E P, itis said in logic that M is a model of formula P

Our model is Kripke Structure (KS)

* Formally:

KS is tuple (S, S, L, R) over a set of atomic propositions (AP) where
» S set of symbolic states (a symbolic state encodes a set of explicit states)
* S, is aninitial state
* L isalabeling function: S — 24P
* R isthe transition relation: RcSxS

* KS is a state-transition system that captures:
* what is true in a state (labeling of the states with APs)
* what can be viewed as an atomic move (denoted as state transition)
* the succession of states (paths on the model graph)

* KS is a static representation that can be unfolded to a tree of execution
traces on which temporal properties are verified.

Representing transition as formula

* In Kripke structure, transition (s, s’) € R corresponds to one step of
program execution.

e Suppose a program has two steps
e X :=(x+1) mod 3;

e v :=(y+1) mod 3. Qx:z (x+1)mod BQ
Th Qy::(y+l)mod BQ
* en

R =1{R,, R,}
*Ri: (X' =(x+1)mod 3) A (y' =)
*R,:(y =(y+1) mod 3) A (X' =x)

Consecutive States

* State space S:

We can restrict our attention to pairs of consecutive states s = (x, y) and
s’=(x’, y’) in the state space {0, 1, 2} x {0, 1, 2}, i.e.

(s,s) € {0,1,2}x{0,1, 2}

* Question: Can we construct a logic formula that describes the relation
between any two consecutive states s and s’?

* Assume each pair of consecutive states is an instance of R, e.g. in set
notation we have R ={R,, R,} and in logic notation R= (R, \/ R,)

Set of transitions Is represented by A, vV A,

By connecting pairs
of consecutive states
we get execution
paths of KS

Representing transitions (revisited Il)

* In Kripke structure, a transition (s, s’) € R corresponds to one step of
program execution.

* For instance, if a program P has two commands
* X :=(x+1) mod 3;
* y:=(y+1) mod 3;

 then for the whole program we have transition relation R
R=((X =x+1mod3)Ay =y)Vv((y =y+1 mod 3) A X' =x)

* (s, s’) that satisfies R means that from state s we can get to s’ by some step
of execution that satisfies R.

A ‘giant’ R

* Now we can compute R for the whole program

* then we will know whether any of states is one-step reachable from
some other

* Convenient, but globally we loose information:
e.g., the order in which the statements are executed

* Comment:

* without ordering, the disjuncts in R have not clear precedence
information!

Introducing program counter

* In the computer, the order of executing commands is controlled by
program counters.

* We introduce an auxilliary variable pc (for programm counter), and
assume the commands in program are labeled with 1,,.. , 1.

* For instance
* In the program:

* l,: x = x+1;
el y = x+1;
e 1,: .

* The effect of executing commands is represented in logic:
* Ri:X’=x+1Ay=yApc=Il,Apc=1,
*R,:y’=y+1 AxX=xApc=l,Apc=1,

Now we have complete symbolic representation of program execution in
our computation model M!

Brushup: Model Checking

MEP?

Given:
e M — model

e P —property to be checked on the model M\
* = —satisfiability relation (,,M satisfies P*)

Goal: Check if M satisfies P

If M = Pitis said in logic that M is a model of formula P

We have seen how M is constructed symbolically
How to express P in logic?

10

Temporal logic CTL*

» Let’s start with semantics

KS and its logic representation provide us static model of program
execution

11

Dynamic model of program execution is
unfolding of the static model

2 options of unfolding to define operational semantics:

Branching time: tree structure Linear time: traces
Is a fqrmula vaI.id ir.1 given node Is a formula valid along a
(e.g.in S2), which is the root of a given path starting from

subtree? node S1?

12

CTL* (Computation Tree Logic)

e CTL* covers both branching time and linear time
interpretations

* Syntax:
* FOL
+

* Temporal Operators
* X: neXt

* F: Future (denoted as () in Uppaal)
* G: Global (denoted as [] in Uppaal)
e U: Until

* R: Release

13

CTL* state formulas and path formulas

e State formulas (are interpreted in states)
 express properties of states

* use path quantifiers:
* A —for all paths (starting from a state),

e E—for some paths (starting from a state)
e Path formulas (are interpreted on paths)
e expess properties of paths

* use state quantifiers:
e G — for all states (of the path)

e F —for some state (of the path)

14

State Formulas (1)

* Atomic propositions are state formulas:
*If p € AP, then p is a state formula
* Examples: X > 0, odd(y), ...

* Propositional combinations of state formulas:

‘=0, VY, pAY..
* Examples:
« x>0\ odd(y),
* req = (AF ack) where
* “A” is a path quantifier
« “F ack” is a path formula
* “AF ack” is a state formula (interpreted in a state)

15

State Formulas (2)

* Quantifiers A and E make from a path formula a state formula
that is interpreted in the scope of A and E.

‘Eop, where @ is a formula, which expresses property of a path
* E means “there exists a path”
* E @- @istrue on some paths starting from this state on.

° A gp
* A means “for all paths”
* A @ - @is true on all paths starting from this state.

16

Forms of Path Formulas

* A state formula ¢
* ¢ istrue in the first state of the path that satisfies path formula
prefixed by ¢

* For path formulas ¢ and v, the path formulas are also:
o VY, @AY
*Xo Fo, Go, Uy, ¢Ry

X —in the next state
 F—eventually

« G —globally

U —until

R —releases

17

Path Formulas (l): Next-operaator X

X @, where @ is a path formula, meaning

* @ is valid in the suffix of this path (path minus the first
state)

Suffix of the path

Head of the path

States: “Head of suffix
@ - ¢is true
(- ¢ can be either true or false in other states

18

Path Formulas Il: Eventually-operator

F o
@ is valid in some state of this path

Head of path - D)
@ @ TT—@

@ - ¢is false
@ - ¢is true
(O - after being true ¢ can be either true or false

19

Path Formulas (l11): Globally-operator

e (G ®
* @ isvalid for head and every suffix of this path

Head of path
@ .
@ @ -

@ - state where @ is true

20

Path Formulas IV: Until-operaator (weak)

* pUy istrue on the path iff
* If wis true in some state of the path
* then in all states before this state ¢ must be true

* Weak until is true also on paths without states where v is true

* For strong until the occurence of state where is true is required

—o—

@ - pistrue

@ -y istrue
(D -¢ and y are either true or false

21

Path Formulas (V). Release-operator

¢ Ry
* i has to be true until and including the point where ¢ becomes
true; if @ never becomes true then y must remain true forever

1)

? @

@ @
@ - ¢is true \
@ - v istrue @ never gets true

D - wcan be either true or false

22

Formal semantics of CTL* (1)

* Formal semantics defines the validity of formulas in mathematically
rigorous way.

* Notations

= - satisfiability relation between formula and model:

*M,skE @ iff @ holds in the state s of model M
‘M, 7E @ iff @ holds along the path 7 in M
e ' 1 i-th suffix of x,

 e.g. forpath #=5,,5.,5S,, ..., =55, ...

23

Semantics of CTL* (2)

* Path formulas are interpreted on paths:
‘M, mkE @
‘MrgEX@
‘M,r=F @
‘M, = Uy

24

Semantics of CTL* (3)

e State formulas are interpreted over a set of states (of a path)
*M,sEDp
*M,sE-@
*M,seE@
*M,sEAp

25

CTL Is special case of CTL*

* Quantifiers over paths
* A ¢o—All: ¢is true for all paths starting from the current state.

* E ¢ — Exists: there exists at least one path starting from the current
state where ¢ is true.

* In CTL, path formulas can occur only when paired with A or E, i.e. one
state operator followed by a path operator.

if @ and y are state formulas, then
* X ¢, (next)
* F ¢, (eventually)

* G ¢, (globally)

* Uy, (until)

« p Ry (release)
are path formulas

26

LTL is special case of CTL

* LTL contains only path formulas

Path formulas:

 |If p € AP, then pis a path formula
* If pand ware path formulas, then
—Q
pVy
4

PRy
are also path formulas.

27

CTL vs. CTL*

* CTL*, CTL and LTL have different expressive powers:

* Example:
* In CTL there is no formula equivalent to LTL formula A(FG p).
* In LTL there is no formula equivalent to CTL formula AG(EF p).

* A(FG p) v AG(EF p) is a CTL* formula that cannot be expressed neither in
CTL norin LTL.

 \We use in our course CTL!

28

Minimal set of CTL temporal operators

* CTL has some redundancy to make expressions more compact and
better readable

* All CTL operators can be expressed using a minimal set of temporal
operators {EU, EF, EG} and propositional connectives -, V

* Following equivalences are used for mapping temporal operators to
minimal set of temporal operators {EU, EF, EG}:
strong until
*EF p=E[true U o] (because F p=[true U ¢])
* AX Q=" EX(ﬂ (p)
* AG p=-EF(—m@p)=-E[true U -¢]
* AF p=AJtrue U p]=-EG- ¢
* AlpUy] =-(E[(- v) U (Vv Y] VEG (~y))

29

Recap

e CTL* is general temporal logic that offers strong expressive power, more
than CTL and LTL separately.

e CTL and LTL are practically useful, they are easier to interpret than CTL*
e CTL* helps to understand the relations between LTL and CTL.

* In the next lecture we will show how to check satisfiability of CTL
formulas on Kripke structure.

30

