v AND THAT
\5 WHY WE

THE MUTUAL EXCLUSION PROBLEM

. 8.03.2018
Deepak Pal

THE MUTUAL EXCLUSION PROBLEM

Process A |je&—w» «— Process B

Process A ' E

¥y~

+ Access to Shared Object s

1
Process B ' ' t

Y

In the following picture two independent processes — A and B -
compete for an object that can be accessed by both between

the moments t,and t,. °

THE MUTUAL EXCLUSION PROBLEM

The conflict comes from the fact that accessing the object requires
a finite amount of time that is not O and the moments of
preemption are completely unpredictable.

Some may argue that most of the time the two processes will not
access the resource in the same time and the probability for
conflict is almost 0. Well, “most of the time” and “is almost 0”
aren’t good enough.

This has to change in “all of the time” and “is always 0” in order to
have a reliable and determinist system.

THE MUTUAL EXCLUSION PROBLEM

- The most logical way to solve this problem is to make sure that only
one process can access the shared object at one time, and this
access has to be complete or atomic (indivisible).

- The section of code we need to protect from concurrent access is
known as critical section.

Process A

Fg

Process B

The result is obvious: the two processes will access the
object sequentially and the process A will be delayed
slightly because of process B keeping the CPU locked while
the critical section is executed.

HOW TO DO THE EXECUTING THINGS NOT TO
TRIP OVER EACH OTHER ?

o Eliminating undesirable interleavings is called the mutual exclusion
problem.

o We need to identify critical sections that only one thread at a time
can enter.

© We need to devise a pre-Condition and a post-Condition to keep
two or more threads from being in their critical sections at the
same time.

while (true) {
non_Critical_Section;
pre-Condition;

critical_Section;
post-Condition;

PROBLEM FOR N PROCESSES

N processes are executing, in an infinite loop, a sequence of
instructions, which can be divided into two subsequences: the
critical section and the non-critical section. The program must
satisfy the mutual exclusion property: instructions from the critical
sections of two or more processes must not be interleaved.

The solution is described by inserting into the loop additional
instructions that are to be executed by a process wishing to enter
and leave its critical section — the pre-Condition and post-
Condition, respectively. These protocols may require additional
variables.

A process may halt in its non-critical section. It may not halt during
execution of its conditions or critical section. If one process halts in
its non-critical section, it must not interfere with the operation of
other processes.

PROBLEM FOR N PROCESSES

The program must not deadlock. If some processes are trying to
enter their critical sections then one of them must eventually
succeed. The program is deadlocked if no process ever succeeds in
making the transition from pre-Condition to critical section.

There must be no starvation of any of the processes. If a process
indicates its intention to enter its critical section by commencing
execution of the pre-Condition, then eventually it must succeed.

In the absence of contention for the critical section a single process
wishing to enter its critical section will succeed. A good solution will
have minimal overhead in this case.

THE MUTUAL EXCLUSION PROBLEM FOR 2 PROCESSES

We will solve the mutual exclusion problem for two processes.

Shared
Pr . S "
ocess A - Object rocess B

One solution to the mutual exclusion problem for two processes is
called Dekker’s algorithm. We will develop this algorithm in step
by-step sequence of incorrect algorithms: each will demonstrate
some pathological behaviour that is typical of concurrent
algorithms.

FIRST ATTEMPT

int turn=1l; I

process P2

process Pl

while (true) { while (true) {
nonCriticalSectionl; nonCriticalSection2;
while (turn == 2) {} while (turn == 1) {}
criticalSectionl; criticalSection2;
turn = 2; turn = 1;

} }

end P1l; end P2;

A single shared variable turn indicates whose turn it is to
enter the critical section.

Mutual exclusion No deadlock No starvation No starvation in absence
of contention
v v v x

UPPAAL MODEL

turn 1= pid

Non-Critical Section |

trying

turn == pid | Pre-Condition |

c5|Criti|:aI Section L\]

turn = 1-pid
Post-Condition |

idle

PO

P1

fun =0 furn 1= 1

MNon-Critical Section '}]

|Non-Gritica| Section '}]

turn==0 |Pre-Condition

turn == 1 Pre-Condition

cs | Critical Section
turn = 1-0 turn = 1-1
idle il idle um
Post-Condition Post-Condition

cs | Critical Section

SECOND ATTEMPT

int cl=1;
int c2=1;
process Pl process P2
while (true) { while (true) {
nonCriticalSectionl; nonCriticalSection2;
while (c2!'=1) ({} while (cl!=1l) ({}
cl=0; c2=0;
criticalSectionl; criticalSection2;
cl=1l; c2=1;
} }
end P1; end P2;

Each process Pi now has its own variable ci. Shared variable
ci==0 signals that Pi is about to enter its critical section.

Mutual exclusion

X

THIRD ATTEMPT

int cl=1;
int c2=1;

process Pl process P2

while (true) { while (true) {
nonCriticalSectionl; nonCriticalSection?2;
cl=0; c2=0;

while (c2'=1) {} while (cl!=1) {}
criticalSectionl; criticalSection2;
cl=1; c2=1;

} }

end P1l; end PZ2;

In Attempt 2 the assignment ci=0 was effectively located in the
critical section. Try moving it o the beginning of the pre-protocol,
ci==0 now signals that Pi wishes to enter its critical section.

Mutual exclusion No deadlock
v x

FOURTH ATTEMPT

int ecl=1;
int c2=1;
process Pl process P2
while (true) { while (true) ({
nonCriticalSectionl; nonCriticalSection2;
cl=0; c2=0;
while (ec2'=1) { while (cl!'=1l) {
cl=1;cl=0; c2=1;c2=0;
} }
criticalSectionl; criticalSection2;
cl=1; c2=1;
} }
end P1l; end P2;

The processes back off entering their critical sections if they
detect both are trying to enter at the same time.

Mutual exclusion No livelock No starvation
v X X

DEKKER’S ALGORITHM

int cl=1;
int c2=1;

process Pl
while (true) {
nonCriticalSectionl;
cl=0;
while (c2!=1)
if (turn==2) {
cl=1;
while (turn'!=1l) {}
cl=0;

}
criticalSectionl;
cl=1l; turn=2;

}
end P1l;

int turn=1;

process P2
while (true) {
nonCriticalSection2;
c2=0;
while (cl!=1)
if (turn==1) {
c2=1;
while (turn!=2) {}
c2=0;

}
criticalSection?2;
c2=1; turn=1;

}
end P2;

The threads now take turns at backing off.

Mutual exclusion No deadlock No starvation No starvation in absencz:

v v v’

of contention
v’

ASSIGNMENTS

o Assignment 1:
» ATM System Model
o (defend model behavior and property verification by 3-Mar-2018)

o Assignment 2:
» Job Shop Model
o (defend model behavior with deadlock by 3-Mar-2018)

o Assignment 3: Mutual Exclusion (discussion and problems in next lab)
o Job Shop model (defend model without deadlock)

o Uppaal models of all mutual exclusion algorithms (attempts)

APPENDIX: PROOF FOR ATTEMPTS

FIRST ATTEMPT

Mutual exclusion No deadlock No starvation No starvation in absence
of contention

v v v x

Mutual exclusion is satisfied

Proof: Suppose that at some point both processes are in their
critical sections. Without loss of generality, assume that P1 entered
at tfime t1, and that P2 entered at time t2, where t1 < 2. P1
remained in its critical section during the interval from 11 to 2.

At time t1, turn==1, and at time t2 turn==2. But during the interval
t1 to 12 P1 remained in its critical section and did not execute its
post-protocol which is the only means of assigning 2 to turn. At 12
turn must still be 1, contradicting the previous statement.

PROOF: FIRST ATTEMPT

The solution cannot deadlock

Proof: For the program to deadlock each process must execute
the test on turn infinitely often failing each time. Therefore,
in P1 turn==1 and in P2 turn==2, which is impossible.

There is no starvation

Proof: For starvation to exist one process must enter its
critical section infinitely often, while the other executes its
pre-protocol forever without progressing to its critical
section.

But if P1 executes its even once, it will set turn==2 in its post-
protocol allowing P2 to enter its critical section.

There is starvation in the absence of contention

Proof: Suppose that P2 halts in its non-critical section: turn
will never be changed from 2 to 1 . P1 may enter its critical
section at most one more time. Once P1 sets turn to 2, it will
never again be able to progress from its pre-protocol to its
critical section.

PROOF: SECOND ATTEMPT

Mutual exclusion

X

Mutual exclusion is not satisfied
Proof: Consider the following interleaving beginning with the initial

1 P1 checks c2 and finds c2==1.
2 P2 checks c1 and finds c1==1.
3. Pl sets c1 to 0.
4, P2 sets c2 to 0.
5 P1 enters its critical section.
6 P2 enters its critical section.

PROOF: THIRD ATTEMPT

Mutual exclusion No deadlock
v X

Mutual exclusion is satisfied

Proof:Suppose that at some point both processes are in their critical
sections. Without loss of generality, assume that P1 entered at time
t1, and that P2 entered at time t2, where 1< t2. P1 remained in its
critical section during the interval from t1 to t2.

At time t1, c1==0 and c2==1 and at time t2 c2==0 and c1==1 . But
during the interval t1 to 2 P1 remained in its critical section and did
not execute its post-protocol which is the only means of assigning 1
to c1. At 12 c1 must still be 0, contradicting the previous statement.

PROOF: THIRD ATTEMPT

Mutual exclusion No deadlock
v X

The program can deadlock
Proof: Consider the following interleaving beginning with the initial
state.

Plsets c1 to 0.
P2 sets c2 to 0.
P1 tests c2 and remains in the loop.
P2 tests c1 and remains in the loop.

o=

Both processes are locked forever in their pre-protocols. e

PROOF: FOURTHATTEMPT

Mutual exclusion No livelock No starvation
v X X

Livelock is a form of deadlock. In a deadlocked computation there is
no possible execution sequence which succeeds. In a livelocked
computation, there are successful computations, but there are one
or more execution sequences in which no process enters its critical
section.

Mutual exclusion is satisfied
Proof:Argument is the same as that for the third attempt.

PROOF: FOURTH ATTEMPT

Mutual exclusion No livelock No starvation

v X X

A process can be starved
Proof: Consider the following interleaving.
1. P1 sets c1 to 0.
2. P2 sets c2 to 0.
3. P2 checks c1 and resets c2 to 1.
4. P1 completes a full cycle:

* checks c2

- enters critical section

* resets c1

- enters non-critical section

*setscl too
B. P2 sets c2 to 0.

P1 enters its critical section infinitely often, P2
remains indefinitely in its pre-protocol.

PROOF: FOURTH ATTEMPT

Mutual exclusion No livelock No starvation
v X X

A program can livelock
Proof: Consider the following interleaving.

Pl sets c1 to 0.

P2 sets c2 to 0.

P1 checks c2 and remains in the loop.
P2 checks c1 and remains in the loop.
P1 resets c1 to 1.

P2 resets c2 to 1.

P1 resets c1 to 0.

P2 resets c2 to 0.

ONoOO AWM

As with deadlock both processes are locked in their pre-protocols.
However, the slightest deviation from the above sequence will allow
one process to enter its critical section.

