
THE MUTUAL EXCLUSION PROBLEM
8.03.2018

Deepak Pal

1

THE MUTUAL EXCLUSION PROBLEM

In the following picture two independent processes – A and B –
compete for an object that can be accessed by both between
the moments t1and t2.

2

THE MUTUAL EXCLUSION PROBLEM

o The conflict comes from the fact that accessing the object requires
a finite amount of time that is not 0 and the moments of
preemption are completely unpredictable.

 Some may argue that most of the time the two processes will not
access the resource in the same time and the probability for
conflict is almost 0. Well, “most of the time” and “is almost 0”
aren’t good enough.

 This has to change in “all of the time” and “is always 0” in order to
have a reliable and determinist system.

3

THE MUTUAL EXCLUSION PROBLEM

o The most logical way to solve this problem is to make sure that only
one process can access the shared object at one time, and this
access has to be complete or atomic (indivisible).

o The section of code we need to protect from concurrent access is
known as critical section.

The result is obvious: the two processes will access the
object sequentially and the process A will be delayed
slightly because of process B keeping the CPU locked while
the critical section is executed.

4

 Eliminating undesirable interleavings is called the mutual exclusion
problem.

 We need to identify critical sections that only one thread at a time
can enter.

 We need to devise a pre-Condition and a post-Condition to keep
two or more threads from being in their critical sections at the
same time.

while (true) {
 non_Critical_Section;
 pre-Condition;
 critical_Section;
 post-Condition;
}

HOW TO DO THE EXECUTING THINGS NOT TO

TRIP OVER EACH OTHER ?

5

PROBLEM FOR N PROCESSES

 N processes are executing, in an infinite loop, a sequence of
instructions, which can be divided into two subsequences: the
critical section and the non-critical section. The program must
satisfy the mutual exclusion property: instructions from the critical
sections of two or more processes must not be interleaved.

 The solution is described by inserting into the loop additional
instructions that are to be executed by a process wishing to enter
and leave its critical section – the pre-Condition and post-
Condition, respectively. These protocols may require additional
variables.

 A process may halt in its non-critical section. It may not halt during
execution of its conditions or critical section. If one process halts in
its non-critical section, it must not interfere with the operation of
other processes.

6

PROBLEM FOR N PROCESSES

 The program must not deadlock. If some processes are trying to
enter their critical sections then one of them must eventually
succeed. The program is deadlocked if no process ever succeeds in
making the transition from pre-Condition to critical section.

 There must be no starvation of any of the processes. If a process
indicates its intention to enter its critical section by commencing
execution of the pre-Condition, then eventually it must succeed.

 In the absence of contention for the critical section a single process
wishing to enter its critical section will succeed. A good solution will
have minimal overhead in this case.

 7

THE MUTUAL EXCLUSION PROBLEM FOR 2 PROCESSES

 We will solve the mutual exclusion problem for two processes.

 One solution to the mutual exclusion problem for two processes is
called Dekker’s algorithm. We will develop this algorithm in step
by-step sequence of incorrect algorithms: each will demonstrate
some pathological behaviour that is typical of concurrent
algorithms.

8

FIRST ATTEMPT

9

UPPAAL MODEL

10

SECOND ATTEMPT

11

THIRD ATTEMPT

12

FOURTH ATTEMPT

13

DEKKER’S ALGORITHM

The threads now take turns at backing off.

14

ASSIGNMENTS

 Assignment 1:

 ATM System Model

 (defend model behavior and property verification by 3-Mar-2018)

 Assignment 2:

 Job Shop Model

 (defend model behavior with deadlock by 3-Mar-2018)

 Assignment 3: Mutual Exclusion (discussion and problems in next lab)

 Job Shop model (defend model without deadlock)

Uppaal models of all mutual exclusion algorithms (attempts)

 15

APPENDIX: PROOF FOR ATTEMPTS

16

FIRST ATTEMPT

17

PROOF: FIRST ATTEMPT

18

PROOF: SECOND ATTEMPT

19

PROOF: THIRD ATTEMPT

20

PROOF: THIRD ATTEMPT

21

PROOF: FOURTHATTEMPT

22

PROOF: FOURTH ATTEMPT

P1 enters its critical section infinitely often, P2
remains indefinitely in its pre-protocol.

23

PROOF: FOURTH ATTEMPT

24

