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Small Modulus and Factoring

Let n = pq be the RSA modulus and p < q are prime numbers.

Trial Division runs in time O(
√
n).

Pollard’s rho algorithm: O( 4
√
n).

Lenstra’s elliptic curve factorization:

e(1+o(1))
√
lnn ln lnn

General Number Field Sieve (GNFS):

e

(
3
√

64
9
+o(1)

)
3
√

lnn(ln lnn)2
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Common Modulus and Simmons Attack

A has eA and dA such that eAdA ≡ 1 (mod ϕ(n)).

B has eB and dB such that eBdB ≡ 1 (mod ϕ(n)).

Let gcd(eA, eB) = 1, which is a very likely case

A and B are sent ciphertexts yA = meA mod n and yB = meB mod n of
the same message m.

Simmons attack:

Find α, β ∈ Z so that αeA + βeB = 1 and α < 0, i.e. α = − |α |.

Compute y−1A mod n and[
y−1A
]|α| · [yB]β = mαeA ·mβeB = mαeA+βeB = m .
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Factoring with Square Roots of 1

Suppose we know b 6= ±1 such that b2 ≡ 1 (mod n) (where n = pq).

From b2 = 1 it follows that (b+ 1)(b− 1) ≡ 0 (mod n).

As b 6= ±1, we have that b+ 1 6≡ 0 (mod n) and b− 1 6≡ 0 (mod n).

As p|(p+ 1)(p− 1) then either p|(b+ 1) or p|(b− 1).

Hence, gcd(b+ 1, n) ∈ {p, q} and we can factor n.
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Finding Square Roots of 1 from Key-Pairs (e, d)

As ed ≡ 1 (mod ϕ(n)), we have ed− 1 = c · ϕ(n) = 2s · λ, where λ ∈ N
is odd.

Finding Square Roots:

◦ Pick random a ∈ {2, . . . , n− 2} so that gcd(a, n) = 1.

◦ Find the smallest j > 0 such that a2
jλ = 1 [exists, because ϕ(n) | 2sλ]

◦ If a2
j−1λ ≡ −1 (mod n), output a2

j−1λ mod n, otherwise try again.

It can be shown that a non-trivial
√

1 is found with probability 1
2 .

Deterministic procedure discovered in 2004.
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Correctness Proof for the Square Root Algorithm

Lemma 1: For any prime numbers p, q ≥ 3, there exists t ∈ N, such that
p−1
2t and q−1

2t are integers and at least one of them is odd. (Obvious)

Lemma 2: For any prime p ≥ 3, there are p−1
2 elements x ∈ Z∗p with

x
p−1
2 ≡ 1 (mod p) and p−1

2 elements with x
p−1
2 ≡ −1 (mod p).

Proof: Fermat’s theorem implies that all p− 1 elements of Z∗p are roots of

the polynomial Xp−1 − 1. Hence, y2 − 1 ≡ 0 (mod p) for any y = x
p−1
2 .

As Zp is a field, we have y ≡ ±1 (mod p).

Therefore, every x ∈ Z∗p is a root of X
p−1
2 − 1 or a root of X

p−1
2 + 1. As

Zp is a field, none of these polynomials has more than p−1
2 roots, which

means that they both have exactly p−1
2 roots, because |Z∗p| = p− 1.
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Theorem: Let p > q ≥ 3 be primes, n = pq, and ed ≡ 1 (mod ϕ(n)).

There exists k ∈ N so that ed−1
2k
∈ N and x

ed−1

2k is a non-trivial
√

1 in Zn
with probability 1

2 for random x← Z∗n.

Proof: Let ∼ be the equivalence relation between Zn and Zp × Zq from
Chinese remainder theorem, and αp+ βq = 1, where α, β ∈ Z. Then for
every x ∈ Zn, xp ∈ Zp and xq ∈ Zq:

x ∼ (x mod p, x mod q)

βqxp + αpxq mod n ∼ (xp, xq) .

Non-trivial
√

1 correspond to pairs (1, q − 1) and (p− 1, 1).

Let ed− 1 = c · ϕ(n) where c = 2m · ` ∈ N and ` is odd.

Let ed− 1 = 2sλ, where λ is odd.
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Let k = t+m+ 1, where t ∈ N is chosen according to Lemma 1, which
means that p−1

2t and q−1
2t are integers. By p, q ≥ 3 we have t ≥ 1.

As 22t | ϕ(n), we have from 2sλ = ed− 1 = 2m` · ϕ(n) that

s ≥ m+ 2t ≥ m+ t+ 1 = k

and hence ed−1
2k
∈ N. Therefore, ed−1

2k
= ϕ(n)`

2t+1 = (p−1)(q−1)`
2·2t and:

x
ed−1

2k ≡ x
(p−1)(q−1)`

2·2t ∼

((
x

p−1
2

p

)` q−1

2t

,

(
x

q−1
2

q

)` p−1

2t

)
.

As x
p−1
2

p and x
q−1
2

q are congruent to −1 or 1 with equal probability, and at
least one of q−1

2t and p−1
2t is odd (Lemma 1), the probability that the

components of the pair are different (i.e. exactly one is 1), is 1
2 and hence

x
ed−1

2k is a non-trivial
√

1 with probability 1
2 .
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Small e: Hastad Broadcast Attack

Users A, B, C have RSA moduli n1, n2, n3. Say e = 3 and the moduli
have no common divisors. Say, m is broadcasted to A,B,C. Having the
ciphertexts:

yA = m3 mod n1, yB = m3 mod n2, yC = m3 mod n3 ,

the attacker uses CRT to find the unique x ∈ Zn1n2n3 such that
x ≡ yA (mod n1)
x ≡ yB (mod n2)
x ≡ yC (mod n3)

As m < min{n1, n2, n3}, then m3 < n1n2n3, which means that m3 is also
the solution of the congruences and hence x = m3 by the uniqueness of
the solution. The attacker just computes m = 3

√
x
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Homomorphity

RSA encryption has the following property:

E(m1m2) = (m1m2)
e mod n = me

1 ·me
2 mod n

= E(m1) · E(m2) mod n .

For example:
E(2m) = E(2) · E(m) mod n ,

which means that given the ciphertext E(m), one can compute the
ciphertext E(2m) without using secret key.
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Abusing the Homomorphity

Assume that a server has RSA public key (e, n).

Users send encrypted messages E(m) to the server, where m is assumed to
be odd.

Otherwise (if m is even), the server replies with an error message.

Weakness: By communicating with the server, we can decrypt any
ciphertext E(m).
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Abusing the Homomorphity

By sending E(m) to the server, we learn if m is odd or even.

Compute E(2m) = E(2) · E(m) and send it to the server.

If m < n
2 , then 2m < n and as 2m mod n is even, we get an error

message.

If n
2 ≤ m < n, then n ≤ 2m < 2n and as 2m mod n = 2m− n is odd,

we do not get error messages.

Hence, we learn if m < n
2 .
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Secure Encryption

Semantic security: Ciphertext C must not reveal any information about
the plaintext M

The textbook RSA is not semantically secure

Example, encrypting yes/no votes. Given an encrypted vote

C = ve mod N ,

an attacker can encrypt both votes and compare the results to C.

Random padding has to be applied before encryption
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Bleichenbacher’s Attack

The PKCS 1 padding looks like this:

02 | Random | 00 | Message

Say a server receives encrypted messages and returns an invalid ciphertext
error message if the decrypted message has an incorrect padding

So, sending a random ciphertext C to the server, an attacker will know if
the corresponding plaintext has 02 in the beginning

Bleichenbacher showed in 1998 that if an attacker who has access to such
a server, can decrypt any ciphertext
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Partial Key Exposure

Given an n-bit RSA modulus N , and n/4 least significant bits of the
secret modulus d, it is easy to compute d

Given an n-bit RSA modulus N = pq, and n/4 least/most significant bits
of p, the modulus N can be factored (Coppersmith 1996)
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Timing Attacks

Let dndn−1 . . . d1d0 be the bit-representation of d. The computation of Md

mod N is performed as follows:

z := M , C := 1
For i = 0 . . . N − 1 do:

if di = 1, then C := C · z mod N
z := z2 mod N

The attacker asks the smartcard to compute a large number of exponents,
measures the times and reconstructs d using statistical analysis.
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Random Faults in Hardware

Smartcard applications of RSA frequently use CRT to speed up md mod n
where n = pq:

dp ← d mod p− 1 dq ← d mod q − 1

Cp ← mdp mod p Cq ← mdq mod q

C ← βqCp + αpCq mod n ,

where α, β ∈ Z are constants such that αp+ βq = 1

Say, an error occurs when computing Cq and C is the erroneous version of
C. Then

Ce ≡ m (mod p) Ce 6≡ m (mod q)

Hence, attacker can compute gcd(n,Ce −m) = p and factorize n
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Shor’s Factoring Attack on a Quantum Computer

Peter Shor showed in 1994, that quantum
computers can find the period of a wide class
of functions f : Z→ Z2m in time O(m2).

By the period of f we mean the smallest
positive integer λ, such that f(x+λ) = f(x)
for every x.

1 Random a← Z∗n is chosen

2 The order r = ordn(a) of a is the period of f(x) = ax mod n that is
found by a quantum computer with probability 1

lnn

3 Using a and r a non-trivial
√

1 is found with probability 1
2
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In-Device Private Key Generation

Keys are generated inside smart-cards.

Pros: Improved trust model, compared to other generation options

Cons: Slow due to the small computational power
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Current Practice in Prime Number Generation

Random candidate p is chosen

Trial division: It is ensured that p is not divisible by any members of a
fixed set Π of small prime numbers

Exponential tests, like the Fermat’ test is applied:

ap−1 mod p = 1

for a random a← {2, 3, . . . , p− 1}

The density of n-bit primes is approximately 1
n .

Division is thousands of times faster than exponentiation.

Trial division eliminates bad candidates fast. Trial division diminishes the
average number of exponential tests.
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Fast-Prime Methods

Chooses candidates in a way that trial division is not needed.

Choose a first candidate a0 so that a0 mod M = 1, where M is the
product of all small primes in Π.

Choose the next candidates ak by ak ← a0 + kM .

Pros: Faster generation of prime numbers

Cons: Lower entropy of prime numbers
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Output Anomalies of Prime Generators

The paper:

“The Million-Key Question – Investigating the Origins of RSA Public Keys” by Svenda, Nemec,

Sekan, Kvasnovsky, Formanek, Komarek, and Matyas

analyses the output of several smart-card prime generators. Anomalies in
the Infineon’s output distribution were discovered.
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Formula for the Infineon Primes

The paper:

“The Return of Coppersmith’s Attack: Practical Factorization of Widely Used RSA Moduli.” by

Nemec, Sys, Svenda, Klinec, and Matyas.

revealed that the Infineon chip’s prime numbers are in the form:

p = 65537a mod M + kM ,

where M is constant and the same for all chips.

For 2048-bit modulus N , M is the product of the first 126 primes.

All public moduli N satisfy (65537c −N) mod M = 0 for some c.

Such c is found in microseconds by the Pohlig-Hellman algorithm

This test was disclosed by the authors in spring 2017, and reached Estonia
in August 2017.
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Naive Attack

Try all ordM (65537) possible a-s and try to find k by Coppersmith’s attack

Here, ordM (65537) is the order of 65537 in the multiplicative group Z∗M
Naive search is infeasible: the number of a-s to examine is 2254.
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Making the Naive Attack Efficient

Main idea: Use a divisor M ′ of M , such that ordM ′(65537) is feasible, but
still the number of bits in M ′ is larger than 2048/4 (necessary for the
Coppersmith’s attack).

Then, the prime numbers are still expressible in the form:

p = 65537a
′

mod M ′ + k′M ′

Authors found optimal M ′ in terms of the overall attack time by brute
force search combined with greedy heuristics.
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Impact of the Attack

By using optimal M ′, the number of possible a-s is 234 for 2048-bit RSA
modulus

k is found in 200 ms on a desktop computer by using Coppersmith’s
algorithm

The total costs by key estimated by authors:

30000 EUR in Amazon cloud

1000 EUR for electricity, without taking hardware into account
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Conclusions

Certified6=secure: Though the Infineon chip was certified by Common
Criteria, it does not mean it is secure against unknown attacks

Vulnerabilities in soft- and hardware are inevitable

IT-Systems design/management must take potential unknown
vulnerabilities into account
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