Lecture 3 Property specification in Temporal Logic CTL*

J.Vain 18.02.2016

Model Checking

$$M \models P$$
?

Given

- ► M model
- ▶ P − property to be checked
- \triangleright = satisfiability relation (,, M satisfies P")

Check if M satisfies P

Model: Kripke Structure (revisited I)

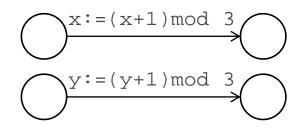
- KS is a state-transition system that captures
 - what is true in a state (denoted as labeling of the state)
 - what can be viewed as an atomic move (denoted as transition)
 - the succession of states (paths on the model graph)
- KS is a static representation that can be unfolded to a tree of execution traces on which temporal properties are verified.

Representing transition as formuli

- In Kripke structure, transition $(s, s') \in R$ corresponds to one step of executing the program.
- Suppose a program has two steps

```
> x := (x+1) \mod 3;
> y := (y+1) \mod 3.
Then R = \{R_1, R_2\}
> R_1 : (x' = (x+1) \mod 3) \land (y' = y)
```

 $R_2: (y' = (y+1) \mod 3) \land (x' = x)$



Consecutive States

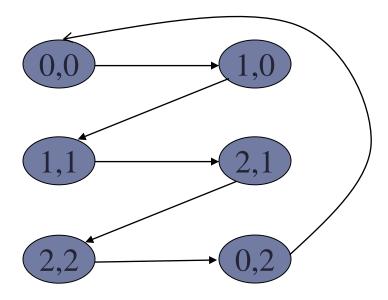
State space:

we can restrict our attention to pairs of consecutive states s = (x, y) and s'=(x', y') on the state space $\{0, 1, 2\} \times \{0, 1, 2\}$, i.e.

$$s, s' \in \{0, 1, 2\} \times \{0, 1, 2\}$$

- Question: Can we construct a logic formula that describes the relation between <u>any</u> two consecutive states s and s'?
- Individual consecutive states can be related by R_1 or R_2 .

Consecutive states represented by $R_1 \vee R_2$



Representing transitions (revisited II)

- In Kripke structure, a transition $(s, s') \in R$ corresponds to one step of execution of the program
- Suppose a program P has two steps

```
x := (x+1) \mod 3;

y := (y+1) \mod 3;
```

For the whole program we have $R=((\dot{x}'=x+1 \mod 3) \land \dot{y}'=\dot{y}) \lor ((\dot{y}'=y+1 \mod 3) \land \dot{x}'=x)$

▶ (s, s') that satisfies R means "from state s we can get to s' by any step of execution that satisfies R"

A giant R

- ▶ We can compute R for the whole program
 - then we will know whether any two states are one-step reachable
- Convenient, but globally we loose information:
 e.g., the order in which the statements are executed
- Comment:
 - without order, the disjuncts have no clear precedence!

Introducing program counter

- In a real machine, the order of execution is managed by program counters.
- We introduce a virtual variable pc, and assume the program commands are labeled with $I_0 \perp I_n$.
- For instance
 - In the program:

```
    l<sub>0</sub>: x := x+1;

    l<sub>1</sub>: y := x+1;

    l<sub>2</sub>: ...
```

In the logic:

```
▶ R_1 : x' = x + 1 \land y' = y \land pc = l_0 \land pc' = l_1

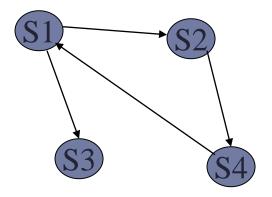
▶ R_2 : y' = y + 1 \land x' = x \land pc = l_1 \land pc' = l_2
```

Now we have complete logic representation of program executions in our model *M*!

Temporal logic CTL*

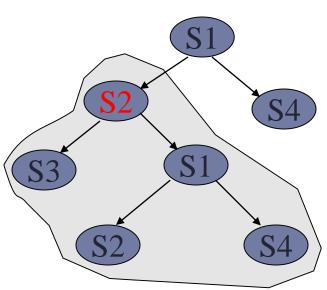
Semantics

KS and its logic representation are static models of program execution

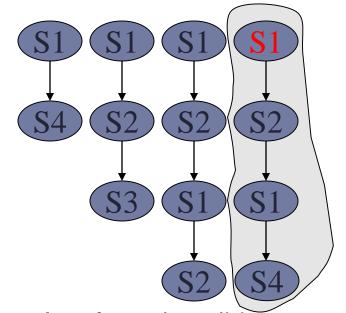


Dynamic model of program execution = unfolding of the static model

Tree structure: branching time Traces: linear time



Is a formula valid at a given node, which represents a subtree?



Is a formula valid along a given path?

CTL* (Computational Tree Logic)

- Combines branching time and linear time
- Basic Operators
 - X: neXt
 - F: Future $(\langle \rangle)$
 - G: Global ([])
 - U: Until
 - R: Release

CTL*

- State formulas
 - Express a propery of a state
 - Path quantifiers:
 - ▶ A for all paths, E for some paths
- Path formulas
 - Expess a property of a path
 - State quantifiers:
 - ▶ G for all states (of the path)
 - F − for some state (of the path)

State Formulas (1)

- Atomic propositions
 - ▶ $p \in AP$, then p is a state formula
 - **Examples:** x > 0, odd(y)
- Propositional combinations of state formulas
 - $\triangleright \neg \varphi, \varphi \lor \psi, \varphi \land \psi \dots$
 - Examples:
 - \rightarrow $x > 0 \lor odd(y)$,
 - $\rightarrow req \Rightarrow (AF ack)$
 - ☐ "A" is a path quantifier
 - \Box "F *ack*" is a path formula
 - \square "AF *ack*" is a state formula (interpreted in a state)

State Formulas (2)

- Quantifiers A and E construct a state formula from a path formula
- \blacktriangleright E ϕ , where ϕ is a path formula, which expresses property of a path
 - E means "there exists"
 - \triangleright E φ on some path <u>from this state on φ is *true*.</u>
- A φ
 - A means "for all paths"
 - A φ on all paths starting from this state φ is true.

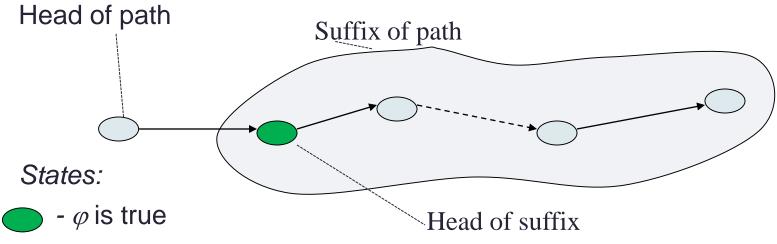
Forms of Path Formulas

- \blacktriangleright A state formula φ
 - ϕ is true for the <u>first state</u> of this path
- For path formulas φ and ψ , the path formulas are:
 - $\rightarrow \varphi, \quad \varphi \lor \psi, \quad \varphi \land \psi$
 - $ightharpoonup X \varphi$, $F\varphi$, $G\varphi$, $\varphi U\psi$, $\varphi R\psi$
 - \rightarrow X next
 - ightharpoonup F eventually
 - \rightarrow G globally
 - ▶ U until
 - ► R release

Path Formulas (I): Next-operator

$X \varphi$, where φ is a path formula

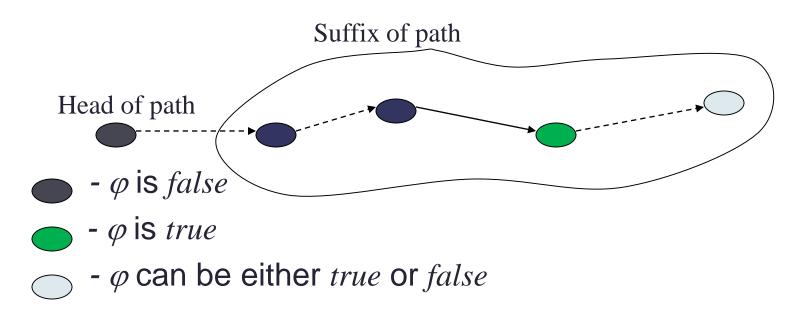
• φ is valid for the suffix of this path (path minus the first state)



 \bigcirc - φ can be either true or false in other states

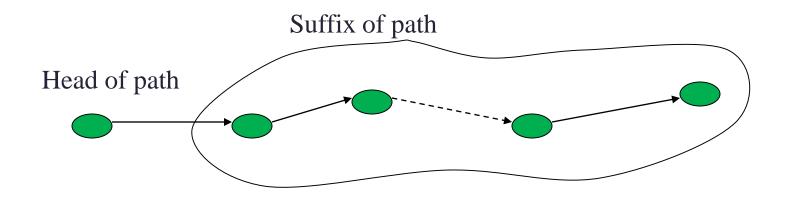
Path Formulas II: Eventually-operator

F *φ*: φ is valid for this path



Path Formulas (III): Globally-operator

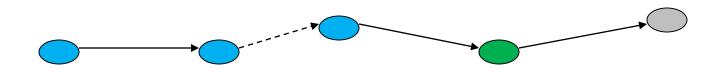
- G φ
 - ϕ is valid for head and every suffix of this path



 $-\varphi$ is true

Path Formulas IV: *Until-*operator

- φ U ψ
 - ψ is valid on a suffix of the path, before the first node of which φ is valid on every suffix thereon

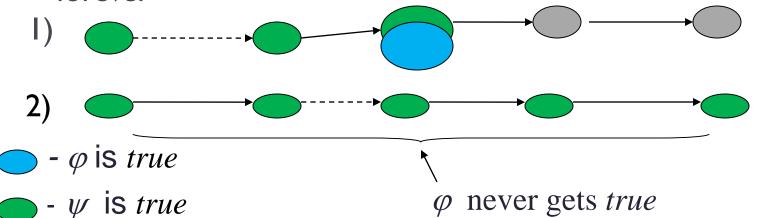


- $-\varphi$ is true
- $-\psi$ is true
- \bigcirc - φ and ψ are either true or false

Path Formulas (V): Release-operator

$\varphi R \psi$

• ψ has to be true until and including the point where ϕ becomes true; if never becomes true must remain true forever



 \bigcirc - ψ can be either *true* or *false*

Formal semantics of CTL* (1)

Notations

- M, s ⊨ φ iff φ holds in state s of model M
 M, π ⊨ φ iff φ holds along the path π in M
- $\blacktriangleright \pi^i : i$ -th suffix of π
 - $\pi = s_0, s_1, \dots, \text{ then } \pi^1 = s_1, \dots$

Semantics of CTL* (2)

- Path formulas are interpreted over a path:
 - M, $\pi \vDash \varphi$
 - M, $\pi \models X \varphi$
 - M, $\pi \models F \varphi$
 - M, $\pi \vDash \varphi \cup \psi$

Semantics of CTL* (3)

- State formulas are interpreted over a set of states (of a path)
 - M, $s \models p$
 - M, $s \models \neg \varphi$
 - M, $s \models E \varphi$
 - M, $s \models A \varphi$

CTL vs. CTL*

- ▶ CTL*, CTL and LTL have different expressive powers:
- Example:
 - In CTL there is no formula being equivalent to LTL formula A(FG p).
 - In LTL there is no formula equivalent to CTL formula AG(EF p).
 - ▶ $A(FG p) \lor AG(EF p)$ is a CTL* formula that cannot be expressed neither in CTL nor in LTL.

CTL

- Quantifiers over paths
 - \land A All: has to hold on all paths starting from the current state.
 - E Exists: there exists at least one path starting from the current state where holds.
- In CTL, path formulas can occur only when paired with A or E, i.e. one path operator followed by a state operator.

if φ and ψ are path formulas, then

- **X** φ,
- F φ,
- \rightarrow G φ ,
- $\rightarrow \varphi U \psi$,
- $\rho R \psi$

are path formulas

LTL (contains only path formulas)

Form of path formulas:

- If $p \in AP$, then p is a path formula
- If φ and ψ are path formulas, then
 - $\vdash \neg \varphi$
 - $\rho \vee \psi$
 - $\rho \wedge \psi$
 - **X** φ
 - \triangleright F φ
 - \rightarrow G φ
 - $\rho U \psi$
 - $\rho R \psi$

are path formulas.

Minimal set of CTL temporal operators

▶ Transformations used for temporal operators :

- $EF \varphi == E [true \ U \ \varphi]$ (because $F \varphi == [true \ U \ \varphi]$)
- $\rightarrow AX \varphi == \neg EX(\neg \varphi)$
- $AG \varphi == \neg EF(\neg \varphi) == \neg E [true \ U \ \varphi]$
- $AF \varphi == A [true \ U \ \varphi] == \neg EG \neg \varphi$
- $A[\varphi U\psi] == \neg (E[(\neg \psi) U \neg (\varphi \lor \psi)] \lor EG (\neg \psi))$

Summary

- CTL* is a general temporal logic that offers strong expressive power, more than CTL and LTL separately.
- CTL and LTL are practically useful enough; CTL* helps us to understand the relations between LTL and CTL.
- Next we will show how to check satisfiability of CTL formuli on Kripke structures