
Model Checking 

CTL model checking algorithms



Recall: Linear Time vs. Branching Time

• In linear time logics we look at execution paths individually
• In branching time logics we view the computation 

alternatives as a tree
– computation tree unfolds the transition relation
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Recall: Computation Tree Logic (CTL)

• In CTL we quantify over the paths in the computation tree

• We use the same temporal operators as in LTL: X, G, F, U

• We attach path quantifiers to these temporal operators:
– A : for all paths
– E : there exists a path

• We end up with eight temporal operator pairs:
– AX, EX, AG, EG, AF, EF, AU, EU
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Examples (continued)
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Automated Verification of Finite State Systems
[Clarke and Emerson 81], [Queille and Sifakis 82]

• CTL Model checking problem: 
Given a transition system T = (S, I, R), and a CTL formula ϕ, 
does the transition system T satisfy the property ϕ?

CTL model checking problem can be solved in 

Note:
– the complexity is linear in the size of the transition 

system T
– the complexity is exponential in the number of variables 

of ϕ and S in the number of concurrent components of T
 This is called the state space explosion problem.

O(|ϕ | × (|S|+|R|))



• Translate the formula to a formula which uses only the basis 

EX ϕ, EG ϕ, ϕ EUψ

– EF ϕ == E[true U(ϕ )] (because F ϕ == [true U(ϕ )] )
– AX ϕ == ¬ EX(¬ ϕ )
– AG ϕ == ¬ EF(¬ ϕ ) == ¬ E[true U (ϕ )]
– AF ϕ == A[true U ϕ ] == ¬ EG( ¬ϕ )
– A[ϕ Uψ] == ¬( E[(¬ ψ) U ¬(ϕ ∨ ψ)] ∨ EG(¬ψ) )

CTL Model Checking Algorithm (1)



CTL Model Checking Algorithm (2)

• Key idea

– Initially, the states S are labeled with atomic propositions from set 
AP.

– Label the states of M with subformulas of p that hold in these states
(start from the innermost non-atomic subformulas of ϕ).

– Each (temporal or boolean) operator has to be processed only once.
– Graph traversal algorithms (DFS or BFS) are used to find the 

labeling for each operator.

• Computation of each sub-formula takes O(|S|+|R|).



• EX ϕ is easy to do in O(|S|+|R|)
– All the nodes which have a next state labeled with ϕ should be 

labeled with EX ϕ

• ϕ EUψ : Find the states which are the initial states of a path where ϕ Uψ
holds
Equivalently, 
– find the nodes which reach ψ labeled node by a path where each 

node is labeled with ϕ
– Label such nodes with ϕ EUψ
It is a reachability problem which can be solved in O(|S|+|R|)

CTL Model Checking Algorithms: intuition



CTL Model Checking Algorithms: intuition

EG ϕ : 

Find paths where each node is labeled with ϕ and label nodes in such 
paths with EG ϕ :
– First remove all the states which do not satisfy ϕ from the transition 

graph
– Compute the connected components of the remaining graph and 

then find the nodes which can reach the connected components 
(both of which can be done in O(|S|+|R|)

– Label the nodes with EG ϕ in the connected components and the 
nodes that can reach the connected components.



Verification vs. Falsification

• Verification: 
– Show that initial states ⊆ truth set of ϕ

• Falsification:
– Find if a state ∈ (initial states ∩ truth set of ¬ϕ)
– Generate a counter-example starting from that state

• CTL model checking algorithm can also generate a counter-example 
path (if the property is not satisfied) without increasing the complexity

• The ability to find counter-examples is one of the biggest strengths of 
model checkers



Problems with the previous algorithm

It is named  explicit state model checking

• All the states and labels associated to the states must be 
recorded when doing states traversal
– needs a lot of memory
– causes exponential explosion of required memory

• the number of states |S| in the transition graph T is 
exponential in the number of variables and concurrent 
processes in the system modelled with LTS.

LTS – Labeled Transition System
(KS is simple form of LTS)



Inroduction to symbolic state model checking

• How to deal with exponential explosion of the memory 
space of CTL model checking???



Characterization of Temporal operators as Fixpoints 
[Emerson & Clarke 80]: Think about temporal op-s as recursive functions on sets

Here are some interesting CTL equivalences (for a state of computation tree)

AG ϕ = ϕ ∧ AX AG ϕ
EG ϕ = ϕ ∧ EX EG ϕ

AF ϕ = ϕ ∨ AX AF ϕ
EF ϕ = ϕ ∨ EX EF ϕ

ϕ AUψ = ψ ∨ (ϕ ∧ AX (ϕ AUψ))
ϕ EUψ = ψ ∨ (ϕ ∧ EX (ϕ EUψ))

Note:
We “unfold” the property by rewriting the CTL temporal operators using 
op-s themselves and EX and AX operators.

function
argument

value



Functionals (mapping of an arbitrary set into a set )

• Given a transition system T=(S, I, R), we will define functions from sets 
of states to sets of states 
– f : 2S → 2S 2S – set of subsets of S

• For example, one such function is the EX operator (which computes the 
“pre-image” of a set of states given a relation R)
– EX : 2S → 2S

which can be defined as:
EX(ϕ ) = { s | (s, s’) ∈ R and s’ ∈ [|ϕ |] }

Abuse of notation: 
Generally, [|ϕ |] denotes the set of states which satisfy the property ϕ, 
i.e., the truth set of ϕ. Here we use just ϕ in the same sense.



Functionals

• Now, we can think of all temporal operators also as 
functionals from sets of states to sets of states

• For example, 
in logic notation:

AX ϕ = ¬EX(¬ ϕ)
or if we use set notation

AX ϕ = (S - EX(S - ϕ)) 

Abuse of notation: we will use the set 
and logic notations interchangeably
keeping in mind the correspondence

Logic Set
false ∅
true S
¬ ϕ S – ϕ
ϕ ∧ψ ϕ ∩ψ
ϕ ∨ψ ϕ ∪ψ



Based on the equivalence EF ϕ = ϕ ∨ EX EF ϕ
we observe that EFϕ is a fixpoint of the following function:

f y = ϕ ∨ EX y, where y = EF ϕ
i.e., f y = y

In fact, EF ϕ is the least fixpoint of f, which is written as:

EF ϕ = µ y . ϕ ∨ EX y

Temporal Properties as Fixpoints (1)

function argument

Value of the function 
is fp if it equals to the 
argument



EF Fixpoint Computation

•  •  •ϕ

EF(ϕ) ≡ states from where ϕ is reachable ≡ ϕ ∪ EX(ϕ) ∪ EX(EX(ϕ)) ∪ ...

EF(ϕ)



Temporal Properties as Fixpoints (2)

Based on the equivalence EG ϕ = ϕ ∧ EX EG ϕ
we observe that EG ϕ is a fixpoint of the following function:

f y = ϕ ∧ EX y,
i.e., f (EG ϕ) = EG ϕ

In fact, EG ϕ is the greatest fixpoint of f, which is written as:

EG ϕ = ν y . ϕ ∧ EX y
function argument

Value that is FP



EG Fixpoint Computation

•  •  • EG(ϕ)

EG(ϕ) ≡ “states that can avoid reaching ¬ ϕ” ≡ ϕ ∩ EX(ϕ) ∩ EX(EX(ϕ)) ∩ ...



µ-Calculus

µ-Calculus is a temporal logic which consist of :
• Atomic properties AP

• Boolean connectives: ¬ , ∧ , ∨
• Pre-image operator: EX
• Least and greatest fixpoint operators: µy. F y and νy. F y 

Any CTL* formula can be expressed in µ-calculus 



Symbolic Model Checking
[McMillan et al. LICS 90]

• Represent sets of states S and the transition relation R as 
Boolean logic formulas

• Fixpoint computation becomes formula manipulation, i.e.
– pre-condition (EX) computation: 

including existentially bound variable elimination

– conjunction (intersection), disjunction (union) and 
negation (set difference), and equivalence check

• Use an efficient data structure for boolean logic formulas 
– Binary Decision Diagrams (BDDs)



Example: Mutual Exclusion Protocol

Process 1:
while (true) {

out:  a := true; turn := true;
wait: await (b = false or turn = false);
cs:   a := false;

}
||
Process 2:
while (true) {

out:  b := true; turn := false;
wait: await (a = false or turn);
cs:   b := false;

}

Two concurrently executing processes are trying to enter their
critical section without violating mutual exclusion condition



Encoding State Space S

• Encode the state space using only boolean variables

• Two program counter variables: pc1, pc2
with domains {out, wait, cs}
– We need two boolean variables per program counter to 

encode their 3 values:
pc10, pc11, pc20, pc21 .

– Encoding: 
¬pc10 ∧ ¬pc11 ≡ pc1 = out
¬pc10 ∧ pc11 ≡ pc1 = wait

pc10 ∧ pc11 ≡ pc1 = cs

• The other three variables are already booleans: turn, a , b



Encoding State Space S

• Each state can be written as a tuple:
(pc10, pc11, pc20, pc21, turn, a, b)
– After encoding:  
(o,o,F,F,F)becomes (F,F,F,F,F,F,F) 
(o,c,F,T,F)becomes (F,F,T,T,F,T,F) 

• We can use boolean logic formulas on the variables 
pc10,pc11,pc20,pc21,turn,a,b to represent sets of states:

{(F,F,F,F,F,F,F)} ≡ ¬pc10 ∧ ¬ pc11 ∧ ¬pc20 ∧ ¬ pc21 ∧ ¬ turn ∧ ¬a ∧ ¬b
{(F,F,T,T,F,F,T)} ≡ ¬pc10 ∧ ¬ pc11 ∧ pc20 ∧ pc21 ∧ ¬ turn ∧ ¬a ∧ b

{(F,F,F,F,F,F,F), (F,F,T,T,F,F,T)} ≡ ¬pc10 ∧ ¬ pc11 ∧ ¬pc20 ∧ ¬ pc21 ∧ ¬
turn ∧ ¬a ∧ ¬b ∨ ¬pc10 ∧ ¬ pc11 ∧ pc20 ∧ pc21 ∧ ¬ turn ∧ ¬a ∧ b

≡ ¬pc10 ∧ ¬ pc11 ∧ ¬ turn ∧ ¬b ∧ (pc20 ∧ pc21 ↔ b)



Encoding Initial States

• We can write the initial states as a boolean logic formuli
– recall that, initially: pc1=o and pc2=o but other 

variables may have any value in their domain

I ≡ {(o,o,F,F,F), (o,o,F,F,T), (o,o,F,T,F), 
(o,o,F,T,T), (o,o,T,F,F), (o,o,T,F,T), 
(o,o,T,T,F), (o,o,T,T,T)} 

≡ ¬pc10 ∧ ¬ pc11 ∧ ¬pc20 ∧ ¬ pc21 

meaning that
pc1 and pc2 are set to false and other variables may have 
arbitrary boolean values



Encoding the Transition Relation

• We can use boolean logic formulas and primed variables to 
encode the transition relation R.

• We will use two sets of variables:
– Current state variables: pc10,pc11,pc20,pc21,turn,a,b
– Next state variables: pc10’,pc11’,pc20’,pc21’,turn’,a’,b’

• For example, we can write a boolean logic formula for the 
statement of process 1:
cs:   a := false;

as follows
pc10 ∧ pc11 ∧ ¬pc10’ ∧ ¬pc11’ ∧ ¬a’ ∧
(pc20’↔pc20) ∧(pc21’↔pc21)∧(turn’↔turn)∧(b’↔b)
– Call this formula R1c



Encoding the Transition Relation

• Similarly we can write a formula Rij for each statement in 
the program

• Then the overall transition relation is
R ≡ R1o ∨ R1w ∨ R1c ∨ R2o ∨ R2w ∨ R2c

But how to interprete temporal operators of ϕ on symbolic 
representation of M??



Symbolic Pre-condition Computation

• Recall the pre-image function
EX : 2S → 2S

which is defined as:
EX(ϕ) = { s | (s,s’) ∈ R and s’ ∈ [|ϕ |]}

• We can symbolically compute pre as follows
EX(ϕ) ≡  ∃V’ (R ∧ ϕ [V’ / V])
– V : values of boolean variables in the current-state 
– V’ : values of boolean variables in the next-state 
– ϕ [V’ / V] : rename variables in ϕ by replacing current-state variables 

with the corresponding next-state variables
–  ∃V’ f: existentially quantify out all the variables in V’ from f 



Renaming

• Assume that we have two variables x, y. 
• Then, V = {x, y} and V’={x’, y’}

• Renaming example:
Given ϕ ≡ x ∧ y :
ϕ[V’ / V]  ≡ x ∧ y [V’ / V]  ≡ x’ ∧ y’



Existential Quantifier Elimination

• Given a boolean formula f and a single variable v
∃v f ≡ f [true/v] ∨ f [false/v]
i.e., to existentially quantify out a variable, first set it to true then set it 

to false and then take the disjunction of the two results.

• Example:  f ≡ ¬x ∧ y ∧ x’ ∧ y’
∃V’ f ≡ ∃x’ ( ∃y’ (¬x ∧ y ∧ x’ ∧ y’) )

≡ ∃x’ ((¬x ∧ y ∧ x’ ∧ y’ )[true/y’] ∨ (¬x ∧ y ∧ x’ ∧ y’ )[false/y’])
≡ ∃x’ (¬x ∧ y ∧ x’ ∧ true ∨ ¬x ∧ y ∧ x’ ∧ false )
≡ ∃x’( ¬x ∧ y ∧ x’ )
≡ (¬x ∧ y ∧ x’)[true/x’] ∨ (¬x ∧ y ∧ x’)[false/x’]) 
≡ ¬x ∧ y ∧ true ∨ ¬x ∧ y ∧ false
≡ ¬x ∧ y 



An Extremely Simple Example

Variables: x, y: boolean

Set of states:
S = {(F,F), (F,T), (T,F), (T,T)}
S ≡ true

Initial condition:
I ≡ ¬ x ∧ ¬ y

Transition relation (negates one variable at a time):
R ≡ x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y  (= means ↔)

F,T

F,F

T,T

T,F



An Extremely Simple Example

Given ϕ ≡ x ∧ y, compute EX(ϕ)

EX(ϕ) ≡  ∃V’ R ∧ ϕ[V’ / V]
≡  ∃V’ R ∧ x’ ∧ y’
≡  ∃V’ (x’=¬x ∧ y’=y ∨ x’=x ∧ y’=¬y ) ∧ x’ ∧ y’
≡  ∃V’ (x’=¬x ∧ y’=y) ∧ x’ ∧ y’ ∨ (x’=x ∧ y’=¬y) ∧ x’ ∧ y’
≡ ∃V’ ¬x ∧ y ∧ x’ ∧ y’ ∨ x ∧ ¬y ∧ x’ ∧ y’
≡ ¬x ∧ y ∨ x ∧ ¬y

EX(x ∧ y) ≡ ¬x ∧ y ∨ x ∧ ¬y
In other words EX({(T,T)}) ≡ {(F,T), (T,F)}

F,T

F,F

T,T

T,F

| by distr

| by ↔

| by substit

| by ∃ -elimination

| by substit



An Extremely Simple Example

Let’s compute EF(x ∧ y)

The fixpoint sequence is
False,   x∧y ,   x∧y ∨ EX(x∧y) ,   x∧y ∨ EX (x∧y ∨ EX(x∧y) ) , ...
If we do the EX computations, we get:
False,     x ∧ y ,     x ∧ y ∨ ¬x ∧ y ∨ x ∧ ¬y,       True

EF(x ∧ y) ≡ True
In other words EF({(T,T)}) ≡ {(F,F),(F,T), (T,F),(T,T)}

F,T

F,F

T,T

T,F

0 1 2 3

1

2

3



An Extremely Simple Example

• Based on our results, for extremely simple transition system 
T = (S, I, R) we have

If
I ⊆ EF(x ∧ y)  (⊆ corresponds to implication) hence:
T ⊨ EF(x ∧ y) 
(i.e., there exists a path from each initial state where 

eventually x and y both become true in the same state)
If
I ⊆ EX(x ∧ y) hence:
T ⊨ EX(x ∧ y) 
(i.e., there does not exist a path from each initial state where 

in the next state x and y both become true)



An Extremely Simple Example

• Let’s try one more property AF(x ∧ y)

• To check this property we first convert it to a formula which 
uses only the temporal operators in our basis:
AF(x ∧ y) ≡ ¬ EG(¬(x ∧ y))

i.e.,
if we can find an initial state which satisfies EG(¬(x ∧ y)), 
then we know that the transition system T does not satisfy 
the property AF(x ∧ y)



An Extremely Simple Example

Let’s compute EG(¬(x ∧ y))

The fixpoint sequence is:
true,     ¬x ∨ ¬y,     (¬x ∨ ¬y) ∧ EX(¬x ∨ ¬y) , … 

If we do the EX computations, we get:
True,     ¬x ∨ ¬y,      ¬x ∨ ¬y, 

EG(¬(x ∧ y)) ≡ ¬x ∨ ¬y
Since I ∩ EG(¬(x ∧ y)) ≠ ∅ we conclude that T ⊨ AF(x ∧ y) 

F,T

F,F

T,T

T,F

0 1 2

0

1



Symbolic CTL Model Checking Algorithm (in general)

• Translate the formula to a formula which uses the basis 
– EX ϕ, EG ϕ, ϕ EUψ

• Atomic formulas can be interpreted directly on the state representation

• For EX ϕ compute the pre-image using existential variable elimination 
as we discussed

• For EG and EU compute the fixpoints iteratively



Symbolic Model Checking Algorithm

Check(f : CTL formula) : boolean logic formula
(here we use logic encoding of sets of states)

case: f ∈ AP return f;

case: f ≡ ¬ ϕ return ¬Check(ϕ);
case: f ≡ ϕ ∧ ψ return Check(ϕ) ∧ Check(ψ);
case: f ≡ ϕ ∨ ψ return Check(ϕ) ∨ Check(ψ);
case: f ≡ EX ϕ return ∃V.R ∧ Check(ϕ)[V’/V]

;



Symbolic Model Checking Algorithm

Check(f) 
…
case: f ≡ EG ϕ

Y := True; 
P := Check(ϕ);
Y’ := P ∧ Check(EX(Y));
while (Y ≠ Y’) 
{ 

Y := Y’; 
Y’ := P ∧ Check(EX(Y)); 

}
return Y;



Symbolic Model Checking Algorithm

Check(f) 
…
case: f ≡ ϕ EU ψ

Y := False; 
P := Check(ϕ); 
Q := Check(ψ);
Y’ := Q ∨ [P ∧ Check(EX(Y))];
while (Y ≠ Y’) 
{ 

Y := Y’; 
Y’:= Q ∨ [P ∧ Check(EX(Y))];

}
return Y;



Binary Decision Diagrams (BDDs)

• Binary Decision Diagrams (BDDs)
– An efficient data structure for boolean formula manipulation.
– There are BDD packages available, e.g.

https://github.com/johnyf/tool_lists/blob/master/bdd.md
• BDD data structure can be used to implement the symbolic model 

checking algorithms discussed above.

• BDDs are  canonical representation for boolean logic formulas, i.e.
– given formulas F and G, they are F ⇔ G if their BDD 

representations will be identical.



Binary Decision Trees (BDT)

Fix a variable order, in each level of the tree branch one value 
of the variable in that level.

• Examples of BDT-s for boolean formulas on two variables:
Variable order: x, y 
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Transforming BDT to  BDD

• Repeatedly apply the following transformations to a BDT:
– Remove duplicate terminals & 

redraw connections to remaining terminals that have same name as 
deleted ones

– Remove duplicate non-terminals & ...
– Remove redundant tests

• These transformations transform the tree to a directed acyclic graph –
binary decision diagram (BDD).



Binary Decision Trees vs. BDDs
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Good News About BDDs

• Given BDDs for two boolean logic formulas F and G,

– the BDDs for F ∧ G  and F ∨ G are of size |F| × |G| (and 
can be computed in that time)

– the BDD for ¬F is of size |F| (and can be computed in 
that time)

– Equivalence F ≡? G can be checked in constant time

– Satisfiability of F can be checked in constant time



Bad News About BDDs

• The size of a BDD can be exponential in the number of boolean 
variables

• The sizes of the BDDs are very sensitive to the ordering of variables. 
Bad variable ordering can cause exponential increase in the size of the 
BDD

• There are functions which have BDDs that are exponential for any 
variable ordering (for example binary multiplication)

• Pre-condition computation requires existential variable elimination
– Existential variable elimination can cause an exponential blow-up in 

the size of the BDD



BDDs are Sensitive to Variable Ordering
Identity relation for two variables: (x’ ↔ x) ∧ (y' ↔ y)
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What About LTL and CTL* Model Checking?

• The complexity of the model checking problem for LTL and CTL*  is: 
– (|S|+|R|) × 2O(|f|)

where | f | is the number of logic connectives in f.

• Typically the size of the formula is much smaller than the size of the 
transition system 
– So the exponential complexity in the size of the formula is not very 

significant in practice

• LTL properties are intuitive and easy to write correctly
– XF ϕ and FX ϕ are equivalent in LTL
– AXAF ϕ and AFAX ϕ are not equivalent in CTL
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