Erinevus lehekülje "Data Mining (ITI8730)" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
55. rida: 55. rida:
 
== Week 3  Cluster analysis ==
 
== Week 3  Cluster analysis ==
 
[[Media:Lecture_03_DM_2021_Cluster_analysis_EM.pdf ‎|Slides]]
 
[[Media:Lecture_03_DM_2021_Cluster_analysis_EM.pdf ‎|Slides]]
 +
 +
== Week 4  Outlier analysis ==
 +
[[Media:Lecture_04_DM2021_Anomaly_and_Outlier_Analysis.pdf ‎|Slides]]
 +
 +
== Week 5  Classification ==
 +
 +
== Week 6  Closed Book I Test 05.10.2021  ==
 +
Home assignment defense 07.10.2021

Redaktsioon: 21. september 2021, kell 10:11

Fall 2021/2022

ITI8730: Data Mining and network analysis

Old code for this course is IDN0110

Taught by: Sven Nõmm

EAP: 6.0

Lectures: Tuesdays 14:00 - 15:30 SOC-414

Labs (practices): Thursdays 16:00 - 17:30 ICT-403

Link to join MS Teams https://teams.microsoft.com/l/channel/19%3a2PRNmKxRN9GR2oG68vo3_-25RYYTxAbZrA5dJ0YfoAA1%40thread.tacv2/General?groupId=9dde2da7-1d60-49a4-ac28-2d065338e369&tenantId=3efd4d88-9b88-4fc9-b6c0-c7ca50f1db57 It is advisable to use MS Teams client application and log in with TalTech account.

To join the course in talTech Moodle please use code "UseR!!!"

Consultation: by appointment only Please do not hesitate to ask for appointment!!! For communication please use the following e-mail: sven.nomm@taltech.ee

Prerequisites to join the course

Students are expected to be familiar with the foundations of Calculus, Linear algebra, Probability theory and Statistics and possess the knowledge of at least one programming language.

Overview

The course aims to provide knowledge of theory behind different methods of data mining and develop practical skills in applying those methods on practice. Is is spanned around four "super problems" of data mining:

  • Clustering
  • Classification
  • Association pattern mining
  • Outlier analysis

Main topics of the course:

  • Data types and Data Preparation
  • Similarity and Distances, Association Pattern Mining,
  • Cluster Analysis, Classification, Outlier analysis
  • Data streams, Text Data, Time Series, Discrete Sequences,
  • Spatial Data, Graph Data, Web Data, Social Network Analysis

Evaluation

  • 3x mandatory closed book tests. Each test gives 10% of the final grade. One make-up attempt for each test.
  • 3x mandatory home assignments (Computational assignment +short write up.) Each assignment gives 10% of the final grade. Late (after deadline) assignments are accepted with penalty of 10% for each day except Saturdays and Sundays.
  • final exam (gives 40 % of the final grade): Written report on assigned topic + discussion with lecturer.

Exam prerequisites: All 3 closed book tests are accepted (graded as 51 or higher), all 3 home assignments are accepted (graded as 51 or higher).

Home assignments, code examples, data files and useful links will be distributed by means of Moodle environment. Course enrollment process in Moodle TBA.

Lectures

Week 1 Distance function

Slides

Week 2 Cluster analysis

Slides

Week 3 Cluster analysis

Slides

Week 4 Outlier analysis

Slides

Week 5 Classification

Week 6 Closed Book I Test 05.10.2021

Home assignment defense 07.10.2021