Erinevus lehekülje "Machine learning ITI8565" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
 
(ei näidata sama kasutaja 29 vahepealset redaktsiooni)
1. rida: 1. rida:
 
[[Machine learning ITI8565]]
 
[[Machine learning ITI8565]]
  
Spring term 2023
+
Spring term 2025
  
 
ITI8565: Machine learning
 
ITI8565: Machine learning
  
Taught by: Sven Nõmm
+
Taught by: Prof. Sven Nõmm
 +
 
 +
Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk
  
 
EAP: 6.0
 
EAP: 6.0
  
#<pre style="color: red">
+
Lectures on Tuesdays 12:15-13:45  U06a-209
#The course will continue purely in online mode!!!
+
 
#</pre>
+
Practices on Thursdays 14:00-15:30  ICT-402
 +
 
 +
Consultations is by appointment only! Please do not hesitate to ask for consultation!  
  
Lectures on Tuesdays 15:30-17:00 ICT-A1
+
Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions.  
 +
This page will be populated during the term with lecture with the lecture slides.
  
Practices on Thursdays 16:30-17:00  ICT-401
 
  
 +
=Lectures and tentative time line =
 +
== 04.02.25 Introduction and desistance function ==
  
=Lectures =
+
[[Media:lecture_01_intorduction_and_distance_function_ml_2025_web_version.pdf ‎|Slides]]
  
== Week 1  Introduction, Distance function ==
+
== 11.02.25 Cluster Analysis I ==
[[Media:Lecture_1_Intorduction_and_Distance_function_ML_2023.pdf ‎|Slides]]
 
  
== Week 2  Cluster analysis I ==
+
[[Media:lecture_02_cluster_analysis_1_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_02_Cluster_Analysis_1_ML_2023.pdf ‎|Slides]]
 
  
== Week 3  Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis) ==
+
== 18.02.25 Cluster analysis II ==
[[Media:Lecture_03_1_Cluster_Analysis_2_Probabilistic_approachML_2023.pdf ‎|Slides]]
 
  
[[Media:Lecture_03_2_anomaly_and_otlier_analysis_ML2023.pdf ‎|Slides]]
+
[[Media:lecture_03_1_cluster_analysis_2_probabilistic_approach_ml_2025.pdf ‎|Slides]]
  
== Week 4  Supervised learning I: Classification ==
+
[[Media:lecture_03_2_anomaly_and_otlier_analysis_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_04_Classification_1_ML_2023.pdf ‎|Slides]]
 
  
== Week 5  Supervised learning II: Regression  ==
+
== 25.02.25 Classification I ==
[[Media:Lecture_05_Supervised_Learning_2_ML_2023.pdf ‎|Slides]]
 
  
<pre style="color: red">
+
[[Media:lecture_04_classification_1_ml_2025.pdf ‎|Slides]]
05.03.2023 23:59 Deadline to submit home assignment I!!!
 
</pre>
 
[[Media:HA_01_ML_2023_web_version.pdf ‎|Home Assignment I]]
 
  
== Week 6  Supervised learning III: Gradient descent ==
+
== 04.03.25 Regression analysis ==
[[Media:Lecture_06_Gradient_descent_andmore_ML_2023.pdf ‎|Slides]]
+
<span style="color:red"> Deadline to submit first home assignment  </span>
  
== Week 7  Supervised learning IV: Support Vector Machine ==
+
[[Media:lecture_05_supervised_learning_2_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_07_Support_Vector_Machines_Kernel_Trick_ML_2023.pdf ‎|Slides]]
 
  
== Week 8  Supervised learning V: Model quality boosting ==
+
[[Media:lecture_05_Gradient_descent_andmore_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_08_Model_Quality_Boosting_ML_2023.pdf ‎|Slides]]
 
  
== Week 9  Markov Models ==
+
== 11.03.25 Separability, Support Vector Machines, Kernel Trick ==
[[Media:Lecture_09_Hidden_Markov_Models_ML2023.pdf ‎|Slides]]
 
  
<pre style="color: red">
+
[[Media:lecture_06_Support_Vector_Machines_Kernel_Trick_ML_2025.pdf ‎|Slides]]
30.03.2023 Test I!!!
 
</pre>
 
  
<pre style="color: red">
+
== 18.03.25 Model quality boosting ==
02.04.2023 23:59 Deadline to submit home assignment II!!!
 
</pre>
 
[[Media:Home_Assignment_02_ML_2023_web_version.pdf ‎|Home Assignment II]]
 
  
 +
[[Media:lecture_07_Model_Quality_Boosting_ML_2025.pdf ‎|Slides]]
  
== Week 10  Neural Networks I ==
+
== 25.03.25 <span style="color:red"> Closed Book Test I </span> ==
[[Media: Lecture_10_Neural_Networks_ML_2023.pdf ‎|Slides]]
 
[[Media: Lecture_10_part_2_Neural_Networks_ML_2023.pdf ‎|Slides]]
 
  
 +
== 01.04.25 Neural networks ==
  
== Week 11  Neural Networks II ==
+
== 08.04.25 Convolutional Neural Networks ==
[[Media: Lecture_11_Neural_Networks_2_ML_2023.pdf ‎|Slides]]
 
  
== Week 12  Deep Learning I: Sequential Models==
+
== 15.04.25 Sequential data modelling ==  
TBP
 
  
== Week 13 Deep Learning II: Convolutional neural networks==
+
== 22.04.25 Deep Learning Transformers ==
TBU [[Media:Lecture_14_Deep_Learning_CNN_ML_2022.pdf ‎|Slides]]
 
  
== Week 14 Deep Learning II: Transformers==
+
== 29.04.25 Generative AI ==
TBU [[Media:Lecture_15_Transformers_ML_2022.pdf ‎|Slides]]
 
  
== Week 15 Foundations of eXplainable AI ==
+
== 06.05.25 Explainable AI ==
[[Media:Lecture_15_Trace_Explain_Interpret_2023.pdf ‎|Slides]]
 
<pre style="color: red">
 
14.05.2023 23:59 Deadline to submit home assignment III!!!
 
</pre>
 
[[Media: HA_3_ML_2023_web_version.pdf ‎|Home Assignment II]]
 
  
== Week 16==
+
== 13.05.25 <span style="color:red"> Closed Book Test II </span> ==
<pre style="color: red">
 
16.05.2023Test II!!!
 
</pre>
 
  
 +
== 20.05.25 TBA ==
  
 +
Grading scale
 
*91 < score      -- grade 5 (excellent)
 
*91 < score      -- grade 5 (excellent)
 
*81 < score < 90 -- grade 4 (very good)
 
*81 < score < 90 -- grade 4 (very good)

Viimane redaktsioon: 31. jaanuar 2025, kell 12:58

Machine learning ITI8565

Spring term 2025

ITI8565: Machine learning

Taught by: Prof. Sven Nõmm

Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk

EAP: 6.0

Lectures on Tuesdays 12:15-13:45 U06a-209

Practices on Thursdays 14:00-15:30 ICT-402

Consultations is by appointment only! Please do not hesitate to ask for consultation!

Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions. This page will be populated during the term with lecture with the lecture slides.


Lectures and tentative time line

04.02.25 Introduction and desistance function

Slides

11.02.25 Cluster Analysis I

Slides

18.02.25 Cluster analysis II

Slides

Slides

25.02.25 Classification I

Slides

04.03.25 Regression analysis

Deadline to submit first home assignment

Slides

Slides

11.03.25 Separability, Support Vector Machines, Kernel Trick

Slides

18.03.25 Model quality boosting

Slides

25.03.25 Closed Book Test I

01.04.25 Neural networks

08.04.25 Convolutional Neural Networks

15.04.25 Sequential data modelling

22.04.25 Deep Learning Transformers

29.04.25 Generative AI

06.05.25 Explainable AI

13.05.25 Closed Book Test II

20.05.25 TBA

Grading scale

  • 91 < score -- grade 5 (excellent)
  • 81 < score < 90 -- grade 4 (very good)
  • 71 < score < 80 -- grade 3 (good)
  • 61 < score < 70 -- grade 2 (satisfactory)
  • 51 < score < 60 -- grade 1 (acceptable)

score ≤ 50 -- a student has failed the course