Erinevus lehekülje "Machine learning ITI8565" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
 
(ei näidata sama kasutaja 23 vahepealset redaktsiooni)
1. rida: 1. rida:
 
[[Machine learning ITI8565]]
 
[[Machine learning ITI8565]]
  
Spring term 2024
+
Spring term 2025
  
 
ITI8565: Machine learning
 
ITI8565: Machine learning
  
Taught by: Sven Nõmm
+
Taught by: Prof. Sven Nõmm
 +
 
 +
Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk
  
 
EAP: 6.0
 
EAP: 6.0
  
Lectures on Tuesdays 12:00-17:00 ICT-A2
+
Lectures on Tuesdays 12:15-13:45 U06a-209
  
Practices on Thursdays 14:00-15:30  ICT-401
+
Practices on Thursdays 14:00-15:30  ICT-402
  
 
Consultations is by appointment only!  Please do not hesitate to ask for consultation!  
 
Consultations is by appointment only!  Please do not hesitate to ask for consultation!  
  
<pre style="color: red">
+
Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions. 
Information for perspective students:
+
This page will be populated during the term with lecture with the lecture slides.  
This page will be populated with the up to date lecture slides during the month of January.
 
You are welcome to join the course by means of ÕIS!
 
On January the 30th around afternoon ÕIS will generate welcome e-mail with the instructions to join Moodle page of the course.  
 
 
 
</pre>
 
  
<pre style="color: red">
 
Slides below are from the year 2023. You are welcome to use this material as the reference but be aware that this year the course content will be revised and a few news topics will be added. 
 
</pre>
 
  
=Lectures =
+
=Lectures and tentative time line =
 +
== 04.02.25 Introduction and desistance function ==
  
== Week 1  Introduction, Distance function ==
+
[[Media:lecture_01_intorduction_and_distance_function_ml_2025_web_version.pdf ‎|Slides]]
[[Media:Lecture_1_Intorduction_and_Distance_function_ML_2023.pdf ‎|Slides]]
 
  
== Week 2  Cluster analysis I ==
+
== 11.02.25 Cluster Analysis I ==
[[Media:Lecture_02_Cluster_Analysis_1_ML_2023.pdf ‎|Slides]]
 
  
== Week 3  Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis) ==
+
[[Media:lecture_02_cluster_analysis_1_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_03_1_Cluster_Analysis_2_Probabilistic_approachML_2023.pdf ‎|Slides]]
 
  
[[Media:Lecture_03_2_anomaly_and_otlier_analysis_ML2023.pdf ‎|Slides]]
+
== 18.02.25 Cluster analysis II ==
  
== Week 4  Supervised learning I: Classification ==
+
[[Media:lecture_03_1_cluster_analysis_2_probabilistic_approach_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_04_Classification_1_ML_2023.pdf ‎|Slides]]
 
  
== Week 5  Supervised learning II: Regression  ==
+
[[Media:lecture_03_2_anomaly_and_otlier_analysis_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_05_Supervised_Learning_2_ML_2023.pdf ‎|Slides]]
 
  
<pre style="color: red">
+
== 25.02.25 Classification I ==
05.03.2023 23:59 Deadline to submit home assignment I!!!
 
</pre>
 
[[Media:HA_01_ML_2023_web_version.pdf ‎|Home Assignment I]]
 
  
== Week 6  Supervised learning III: Gradient descent ==
+
[[Media:lecture_04_classification_1_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_06_Gradient_descent_andmore_ML_2023.pdf ‎|Slides]]
 
  
== Week 7  Supervised learning IV: Support Vector Machine ==
+
== 04.03.25 Regression analysis ==
[[Media:Lecture_07_Support_Vector_Machines_Kernel_Trick_ML_2023.pdf ‎|Slides]]
+
<span style="color:red"> Deadline to submit first home assignment  </span>
  
== Week 8  Supervised learning V: Model quality boosting ==
+
[[Media:lecture_05_supervised_learning_2_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_08_Model_Quality_Boosting_ML_2023.pdf ‎|Slides]]
 
  
== Week 9  Markov Models ==
+
[[Media:lecture_05_Gradient_descent_andmore_ml_2025.pdf ‎|Slides]]
[[Media:Lecture_09_Hidden_Markov_Models_ML2023.pdf ‎|Slides]]
 
  
<pre style="color: red">
+
== 11.03.25 Separability, Support Vector Machines, Kernel Trick ==
30.03.2023 Test I!!!
 
</pre>
 
  
<pre style="color: red">
+
[[Media:lecture_06_Support_Vector_Machines_Kernel_Trick_ML_2025.pdf ‎|Slides]]
02.04.2023 23:59 Deadline to submit home assignment II!!!
 
</pre>
 
[[Media:Home_Assignment_02_ML_2023_web_version.pdf ‎|Home Assignment II]]
 
  
 +
== 18.03.25 Model quality boosting ==
  
== Week 10  Neural Networks I ==
+
[[Media:lecture_07_Model_Quality_Boosting_ML_2025.pdf ‎|Slides]]
[[Media: Lecture_10_Neural_Networks_ML_2023.pdf ‎|Slides]]
 
[[Media: Lecture_10_part_2_Neural_Networks_ML_2023.pdf ‎|Slides]]
 
  
 +
== 25.03.25 <span style="color:red"> Closed Book Test I </span> ==
  
== Week 11  Neural Networks II ==
+
== 01.04.25 Neural networks ==
[[Media: Lecture_11_Neural_Networks_2_ML_2023.pdf ‎|Slides]]
 
  
== Week 12  Deep Learning I: Sequential Models==
+
== 08.04.25 Convolutional Neural Networks ==
TBP
 
  
== Week 13 Deep Learning II: Convolutional neural networks==
+
== 15.04.25 Sequential data modelling ==  
TBU [[Media:Lecture_14_Deep_Learning_CNN_ML_2022.pdf ‎|Slides]]
 
  
== Week 14 Deep Learning II: Transformers==
+
== 22.04.25 Deep Learning Transformers ==
TBU [[Media:Lecture_15_Transformers_ML_2022.pdf ‎|Slides]]
 
  
 +
== 29.04.25 Generative AI ==
  
<pre style="color: red">
+
== 06.05.25 Explainable AI ==
14.05.2023 23:59 Deadline to submit home assignment III!!!
 
</pre>
 
[[Media: HA_3_ML_2023_web_version.pdf ‎|Home Assignment III]]
 
  
== Week 16==
+
== 13.05.25 <span style="color:red"> Closed Book Test II </span> ==
<pre style="color: red">
 
16.05.2023Test II!!!
 
</pre>
 
  
 +
== 20.05.25 TBA ==
  
 +
Grading scale
 
*91 < score      -- grade 5 (excellent)
 
*91 < score      -- grade 5 (excellent)
 
*81 < score < 90 -- grade 4 (very good)
 
*81 < score < 90 -- grade 4 (very good)

Viimane redaktsioon: 31. jaanuar 2025, kell 12:58

Machine learning ITI8565

Spring term 2025

ITI8565: Machine learning

Taught by: Prof. Sven Nõmm

Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk

EAP: 6.0

Lectures on Tuesdays 12:15-13:45 U06a-209

Practices on Thursdays 14:00-15:30 ICT-402

Consultations is by appointment only! Please do not hesitate to ask for consultation!

Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions. This page will be populated during the term with lecture with the lecture slides.


Lectures and tentative time line

04.02.25 Introduction and desistance function

Slides

11.02.25 Cluster Analysis I

Slides

18.02.25 Cluster analysis II

Slides

Slides

25.02.25 Classification I

Slides

04.03.25 Regression analysis

Deadline to submit first home assignment

Slides

Slides

11.03.25 Separability, Support Vector Machines, Kernel Trick

Slides

18.03.25 Model quality boosting

Slides

25.03.25 Closed Book Test I

01.04.25 Neural networks

08.04.25 Convolutional Neural Networks

15.04.25 Sequential data modelling

22.04.25 Deep Learning Transformers

29.04.25 Generative AI

06.05.25 Explainable AI

13.05.25 Closed Book Test II

20.05.25 TBA

Grading scale

  • 91 < score -- grade 5 (excellent)
  • 81 < score < 90 -- grade 4 (very good)
  • 71 < score < 80 -- grade 3 (good)
  • 61 < score < 70 -- grade 2 (satisfactory)
  • 51 < score < 60 -- grade 1 (acceptable)

score ≤ 50 -- a student has failed the course