Erinevus lehekülje "Machine learning ITI8565" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
 
(ei näidata sama kasutaja 11 vahepealset redaktsiooni)
1. rida: 1. rida:
 
[[Machine learning ITI8565]]
 
[[Machine learning ITI8565]]
  
Spring term 2024
+
Spring term 2025
  
 
ITI8565: Machine learning
 
ITI8565: Machine learning
  
Taught by: Sven Nõmm
+
Taught by: Prof. Sven Nõmm
 +
 
 +
Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk
  
 
EAP: 6.0
 
EAP: 6.0
  
Lectures on Tuesdays 12:00-17:00 ICT-A2
+
Lectures on Tuesdays 12:15-13:45 U06a-209
  
Practices on Thursdays 14:00-15:30  ICT-401
+
Practices on Thursdays 14:00-15:30  ICT-402
  
 
Consultations is by appointment only!  Please do not hesitate to ask for consultation!  
 
Consultations is by appointment only!  Please do not hesitate to ask for consultation!  
  
 +
Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions. 
 +
This page will be populated during the term with lecture with the lecture slides.
  
<pre style="color: red">
 
Some slides below are mostly from the year 2023. You are welcome to use this material as the reference but be aware that this year the course content will be revised and a few news topics will be added. 
 
</pre>
 
 
=Lectures =
 
  
== Week 1  Introduction, Distance function ==
+
=Lectures and tentative time line =
[[Media:lecture_01_intorduction_and_distance_function_ml_2024_web_version.pdf ‎|Slides]]
+
== 04.02.25 Introduction and desistance function ==
  
== Week 2  Cluster analysis I ==
+
[[Media:lecture_01_intorduction_and_distance_function_ml_2025_web_version.pdf ‎|Slides]]
[[Media:lecture_02_cluster_analysis_1_ml_2024.pdf ‎|Slides]]
 
  
== Week 3  Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis) ==
+
== 11.02.25 Cluster Analysis I ==
[[Media:lecture_03_1_cluster_analysis_2_probabilistic_approach_ml_2024.pdf ‎|Slides]]
 
  
[[Media:lecture_03_2_anomaly_and_otlier_analysis_ml_2024.pdf ‎|Slides]]
+
[[Media:lecture_02_cluster_analysis_1_ml_2025.pdf ‎|Slides]]
  
== Week 4  Supervised learning I: Classification ==
+
== 18.02.25 Cluster analysis II ==
[[Media:lecture_04_classification_1_ml_2024.pdf ‎|Slides]]
 
  
== Week 5  Supervised learning II: Regression  ==
+
[[Media:lecture_03_1_cluster_analysis_2_probabilistic_approach_ml_2025.pdf ‎|Slides]]
[[Media:lecture_05_supervised_learning_2_ml_2024.pdf ‎|Slides]]
 
  
== Week 6  Supervised learning III: Gradient descent ==
+
[[Media:lecture_03_2_anomaly_and_otlier_analysis_ml_2025.pdf ‎|Slides]]
[[Media:lecture_06_Gradient_descent_andmore_ml_2024.pdf ‎|Slides]]
 
  
[[Media:lecture_06_Support_Vector_Machines_Kernel_Trick_ML_2024.pdf ‎|Slides]]
+
== 25.02.25 Classification I ==
  
== Week 7  Supervised learning V: Model quality boosting ==
+
[[Media:lecture_04_classification_1_ml_2025.pdf ‎|Slides]]
[[Media:lecture_07_Model_Quality_Boosting_ML_2024.pdf ‎|Slides]]
 
  
== Week 8 Closed book test 1 ==
+
== 04.03.25 Regression analysis ==  
 +
<span style="color:red"> Deadline to submit first home assignment  </span>
  
== Week 9  Neural Networks I ==
+
[[Media:lecture_05_supervised_learning_2_ml_2025.pdf ‎|Slides]]
[[Media: lecture_8_neural_networks_ML_2024.pdf ‎|Slides part I ]]
 
[[Media: Lecture_8_part_2_neural_networks_ML_2024.pdf ‎|Slides part II]]
 
[[Media: lecture_08_part_3_neural_networks_2_ML_2024.pdf ‎|Slides part III]]
 
  
== Week 10  Sequential processes modelling: from Markov Models to LSTM ==
+
[[Media:lecture_05_Gradient_descent_andmore_ml_2025.pdf ‎|Slides]]
  
 +
== 11.03.25 Separability, Support Vector Machines, Kernel Trick ==
  
== Week 12  Deep Learning I: Transformers==
+
[[Media:lecture_06_Support_Vector_Machines_Kernel_Trick_ML_2025.pdf ‎|Slides]]
TBA
 
  
== Week 13 Deep Learning II: Convolutional neural networks==
+
== 18.03.25 Model quality boosting ==
  
 +
[[Media:lecture_07_Model_Quality_Boosting_ML_2025.pdf ‎|Slides]]
  
== Week 14 Deep Learning III: Generative AI ==
+
== 25.03.25 <span style="color:red"> Closed Book Test I </span> ==
  
 +
== 01.04.25 Neural networks ==
  
== Week 15 Explainable AI==
+
== 08.04.25 Convolutional Neural Networks ==
  
 +
== 15.04.25 Sequential data modelling ==
  
 +
== 22.04.25 Deep Learning Transformers ==
  
 +
== 29.04.25 Generative AI ==
  
 +
== 06.05.25 Explainable AI ==
  
 +
== 13.05.25 <span style="color:red"> Closed Book Test II </span> ==
  
 +
== 20.05.25 TBA ==
  
 +
Grading scale
 
*91 < score      -- grade 5 (excellent)
 
*91 < score      -- grade 5 (excellent)
 
*81 < score < 90 -- grade 4 (very good)
 
*81 < score < 90 -- grade 4 (very good)

Viimane redaktsioon: 31. jaanuar 2025, kell 12:58

Machine learning ITI8565

Spring term 2025

ITI8565: Machine learning

Taught by: Prof. Sven Nõmm

Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk

EAP: 6.0

Lectures on Tuesdays 12:15-13:45 U06a-209

Practices on Thursdays 14:00-15:30 ICT-402

Consultations is by appointment only! Please do not hesitate to ask for consultation!

Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions. This page will be populated during the term with lecture with the lecture slides.


Lectures and tentative time line

04.02.25 Introduction and desistance function

Slides

11.02.25 Cluster Analysis I

Slides

18.02.25 Cluster analysis II

Slides

Slides

25.02.25 Classification I

Slides

04.03.25 Regression analysis

Deadline to submit first home assignment

Slides

Slides

11.03.25 Separability, Support Vector Machines, Kernel Trick

Slides

18.03.25 Model quality boosting

Slides

25.03.25 Closed Book Test I

01.04.25 Neural networks

08.04.25 Convolutional Neural Networks

15.04.25 Sequential data modelling

22.04.25 Deep Learning Transformers

29.04.25 Generative AI

06.05.25 Explainable AI

13.05.25 Closed Book Test II

20.05.25 TBA

Grading scale

  • 91 < score -- grade 5 (excellent)
  • 81 < score < 90 -- grade 4 (very good)
  • 71 < score < 80 -- grade 3 (good)
  • 61 < score < 70 -- grade 2 (satisfactory)
  • 51 < score < 60 -- grade 1 (acceptable)

score ≤ 50 -- a student has failed the course