Erinevus lehekülje "Machine learning ITI8565" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
 
(ei näidata sama kasutaja 116 vahepealset redaktsiooni)
1. rida: 1. rida:
 
[[Machine learning ITI8565]]
 
[[Machine learning ITI8565]]
  
Previous years: [[Machine learning ITI8565 (2017)|2017]]
+
Spring term 2025
  
Spring 2017/2018
+
ITI8565: Machine learning
  
ITI8565: Machine learning
+
Taught by: Prof. Sven Nõmm
  
Taught by: Sven Nõmm
+
Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk
  
 
EAP: 6.0
 
EAP: 6.0
  
Time and place:
+
Lectures on Tuesdays 12:15-13:45 U06a-209
  Lectures: Tuesdays 16:00-17:30 ICT-A1
+
 
  Labs:  Thursdays   16:00-17:30  ICT-401
+
Practices on Thursdays 14:00-15:30  ICT-402
  Self Practice Fridays 10:00 - 14:00 ICT-405
+
 
Consultation: TBA
+
Consultations is by appointment only!  Please do not hesitate to ask for consultation!
   
+
 
Additional information: sven.nomm@ttu.ee
+
Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions. 
 +
This page will be populated during the term with lecture with the lecture slides.
 +
 
 +
 
 +
=Lectures and tentative time line =
 +
== 04.02.25 Introduction and desistance function ==
 +
 
 +
[[Media:lecture_01_intorduction_and_distance_function_ml_2025_web_version.pdf ‎|Slides]]
 +
 
 +
== 11.02.25 Cluster Analysis I ==
 +
 
 +
[[Media:lecture_02_cluster_analysis_1_ml_2025.pdf ‎|Slides]]
 +
 
 +
== 18.02.25 Cluster analysis II ==
 +
 
 +
[[Media:lecture_03_1_cluster_analysis_2_probabilistic_approach_ml_2025.pdf ‎|Slides]]
 +
 
 +
[[Media:lecture_03_2_anomaly_and_otlier_analysis_ml_2025.pdf ‎|Slides]]
 +
 
 +
== 25.02.25 Classification I ==
 +
 
 +
[[Media:lecture_04_classification_1_ml_2025.pdf ‎|Slides]]
 +
 
 +
== 04.03.25 Regression analysis ==  
 +
<span style="color:red"> Deadline to submit first home assignment  </span>
 +
 
 +
[[Media:lecture_05_supervised_learning_2_ml_2025.pdf ‎|Slides]]
  
==Evaluation==
+
[[Media:lecture_05_Gradient_descent_andmore_ml_2025.pdf ‎|Slides]]
  
*91 < score      -- grade 5 (excellent)
+
== 11.03.25 Separability, Support Vector Machines, Kernel Trick ==
*81 < score < 90 -- grade 4 (very good)
+
 
*71 < score < 80 -- grade 3 (good)
+
[[Media:lecture_06_Support_Vector_Machines_Kernel_Trick_ML_2025.pdf ‎|Slides]]
*61 < score < 70 -- grade 2 (satisfactory)
 
*51 < score < 60 -- grade 1 (acceptable)
 
score ≤ 50 -- a student has failed the course
 
  
=Lectures =
+
== 18.03.25 Model quality boosting ==
== Lecture 1  Introduction and distance function ==
 
[[Media:Lecture_1_Intorduction_and_DistanceFunction_ML_2018.pdf ‎|Slides]]
 
  
== Lecture 2  Cluster Analysis I ==
+
[[Media:lecture_07_Model_Quality_Boosting_ML_2025.pdf ‎|Slides]]
[[Media:Lecture_2_Cluster_Analysis_1_ML_2018.pdf ‎|Slides]]
 
  
[[Media:Data_sets.zip ‎|Data sets for practice]]
+
== 25.03.25 <span style="color:red"> Closed Book Test I </span> ==
  
== Lecture 3  Cluster Analysis II Probabilistic approach ==
+
== 01.04.25 Neural networks ==
[[Media:Lecture_3_Cluster_Analysis_2_ML_2018.pdf ‎|Slides]]
 
  
== Lecture 4  Supervised Learning I  ==
+
== 08.04.25 Convolutional Neural Networks ==
[[Media:Lecture_4_Classification_1_ML_2018.pdf ‎|Slides]]
 
  
== Lecture 5  Supervised Learning II  ==
+
== 15.04.25 Sequential data modelling ==  
[[Media:Lecture_5_Classification_2_ML_2018.pdf ‎|Slides]]
 
  
== Lecture 6  Supervised Learning III  ==
+
== 22.04.25 Deep Learning Transformers ==
[[Media:Lecture_6_Gradient_descent_andmore_ML_2018.pdf ‎|Slides]]
 
  
== Lecture 7  Supervised Learning IV  ==
+
== 29.04.25 Generative AI ==
[[Media:Lecture_7_Support_Vector_Machines_Kernel_Trick_ML_2018.pdf ‎|Slides]]
 
  
== Lecture 9  Supervised Learning VI: Neural Networks  ==
+
== 06.05.25 Explainable AI ==
[[Media:Lecture_9_Neural_Networks_ML_2018.pdf ‎|Slides]]
 
[[Media:Lecture_9_part2_Neural_Networks_ML_2018.pdf ‎|Slides]]
 
  
== Lecture 10  Supervised Learning VII: Neural Networks  ==
+
== 13.05.25 <span style="color:red"> Closed Book Test II </span> ==
[[Media:Lecture_10_Neural_Networks_ML_2018.pdf ‎|Slides]]
 
  
== Lecture 11  Guest lecture on cybersecurity by Hayretdin Bahsi==
+
== 20.05.25 TBA ==
[[Media:Cyber_Security_Guest_Lecture.pdf ‎|Slides]]
 
  
== Lecture 12  Enseble learning==
+
Grading scale
[[Media:Lecture_11_Bagging_and_Ensembles_2018.pdf ‎|Slides]]
+
*91 < score      -- grade 5 (excellent)
 +
*81 < score < 90 -- grade 4 (very good)
 +
*71 < score < 80 -- grade 3 (good)
 +
*61 < score < 70 -- grade 2 (satisfactory)
 +
*51 < score < 60 -- grade 1 (acceptable)
 +
score ≤ 50 -- a student has failed the course

Viimane redaktsioon: 31. jaanuar 2025, kell 12:58

Machine learning ITI8565

Spring term 2025

ITI8565: Machine learning

Taught by: Prof. Sven Nõmm

Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk

EAP: 6.0

Lectures on Tuesdays 12:15-13:45 U06a-209

Practices on Thursdays 14:00-15:30 ICT-402

Consultations is by appointment only! Please do not hesitate to ask for consultation!

Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions. This page will be populated during the term with lecture with the lecture slides.


Lectures and tentative time line

04.02.25 Introduction and desistance function

Slides

11.02.25 Cluster Analysis I

Slides

18.02.25 Cluster analysis II

Slides

Slides

25.02.25 Classification I

Slides

04.03.25 Regression analysis

Deadline to submit first home assignment

Slides

Slides

11.03.25 Separability, Support Vector Machines, Kernel Trick

Slides

18.03.25 Model quality boosting

Slides

25.03.25 Closed Book Test I

01.04.25 Neural networks

08.04.25 Convolutional Neural Networks

15.04.25 Sequential data modelling

22.04.25 Deep Learning Transformers

29.04.25 Generative AI

06.05.25 Explainable AI

13.05.25 Closed Book Test II

20.05.25 TBA

Grading scale

  • 91 < score -- grade 5 (excellent)
  • 81 < score < 90 -- grade 4 (very good)
  • 71 < score < 80 -- grade 3 (good)
  • 61 < score < 70 -- grade 2 (satisfactory)
  • 51 < score < 60 -- grade 1 (acceptable)

score ≤ 50 -- a student has failed the course