Erinevus lehekülje "Machine learning ITI8565" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
 
(ei näidata sama kasutaja 74 vahepealset redaktsiooni)
1. rida: 1. rida:
 
[[Machine learning ITI8565]]
 
[[Machine learning ITI8565]]
  
Spring term 2020
+
Spring term 2025
  
 
ITI8565: Machine learning
 
ITI8565: Machine learning
  
Taught by: Sven Nõmm
+
Taught by: Prof. Sven Nõmm
 +
 
 +
Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk
  
 
EAP: 6.0
 
EAP: 6.0
  
 +
Lectures on Tuesdays 12:15-13:45  U06a-209
 +
 +
Practices on Thursdays 14:00-15:30  ICT-402
 +
 +
Consultations is by appointment only!  Please do not hesitate to ask for consultation!
 +
 +
Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions. 
 +
This page will be populated during the term with lecture with the lecture slides.
 +
 +
 +
=Lectures and tentative time line =
 +
== 04.02.25 Introduction and desistance function ==
 +
 +
[[Media:lecture_01_intorduction_and_distance_function_ml_2025_web_version.pdf ‎|Slides]]
 +
 +
== 11.02.25 Cluster Analysis I ==
 +
 +
[[Media:lecture_02_cluster_analysis_1_ml_2025.pdf ‎|Slides]]
 +
 +
== 18.02.25 Cluster analysis II ==
 +
 +
[[Media:lecture_03_1_cluster_analysis_2_probabilistic_approach_ml_2025.pdf ‎|Slides]]
  
'''[[NB! Starting 19.03.2020 lectures take place online using MS teams environment!!!  ITI8565 Machine learning team]]'''
+
[[Media:lecture_03_2_anomaly_and_otlier_analysis_ml_2025.pdf ‎|Slides]]
Lecture slides and all other necessary files are shared in
 
ained.ttu.ee (your account should be linked to your e-mail!)
 
Also all the files uploaded to the ITI8565 Machine learning team.
 
  
 +
== 25.02.25 Classification I ==
  
 +
[[Media:lecture_04_classification_1_ml_2025.pdf ‎|Slides]]
  
Time and place:
+
== 04.03.25 Regression analysis ==  
  Lectures: Thursdays 14:15-15:45 ICT-315
+
<span style="color:red"> Deadline to submit first home assignment </span>
  Labs:  Thursdays  16:00-17:30 ICT-401
 
  
Consultation: By appointment. Please do not hesitate to ask for an appointment.
+
[[Media:lecture_05_supervised_learning_2_ml_2025.pdf ‎|Slides]]
 
Additional information: sven.nomm@taltech.ee
 
  
Lecture slides will appear here each week AFTER the lecture!
+
[[Media:lecture_05_Gradient_descent_andmore_ml_2025.pdf ‎|Slides]]
Moodle environment @ ained.ttu.ee will be available for registration on  30.01.2020  16:00.  
 
  
=Lectures =
+
== 11.03.25 Separability, Support Vector Machines, Kernel Trick ==
== Lecture 1  Introduction ==
 
[[Media:Lecture_1_Intorduction_and_DistanceFunction_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 2  Cluster Analysis 1 ==
+
[[Media:lecture_06_Support_Vector_Machines_Kernel_Trick_ML_2025.pdf ‎|Slides]]
[[Media:Lecture_2_Cluster_Analysis_1_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 3  Cluster Analysis 2 ==
+
== 18.03.25 Model quality boosting ==
[[Media:Lecture_3_Cluster_Analysis_2_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 4  Supervised learning 1 ==
+
[[Media:lecture_07_Model_Quality_Boosting_ML_2025.pdf ‎|Slides]]
[[Media:Lecture_4_Classification_1_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 5  Supervised learning 2 ==
+
== 25.03.25 <span style="color:red"> Closed Book Test I </span> ==
[[Media:Lecture_5_Classification_2_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 6  Supervised learning 3 ==
+
== 01.04.25 Neural networks ==
[[Media:Lecture_6_Gradient_descent_andmore_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 7  Supervised learning 4 ==
+
== 08.04.25 Convolutional Neural Networks ==
[[Media:Lecture_7_Support_Vector_Machines_Kernel_Trick_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 8  Supervised learning 5 ==
+
== 15.04.25 Sequential data modelling ==  
[[Media:Lecture_8_1_Supervised_learning_NaiveBayes.pdf ‎|Slides]]
 
[[Media:Lecture_8_Neural_Networks_ML_2020.pdf ‎|Slides]]
 
[[Media:Lecture_8_part2_Neural_Networks_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 9 Supervised learning 6 ==
+
== 22.04.25 Deep Learning Transformers ==
[[Media:Lecture_09_Neural_Networks_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 11 Supervised learning 6 ==
+
== 29.04.25 Generative AI ==
[[Media:Lecture_10_Practical_ML_2020.pdf ‎|Slides]]
 
  
== Lecture 12 Markov chains and hidden Markov models==
+
== 06.05.25 Explainable AI ==
[[Media:Lecture_12_Hidden_Markov_Models_2020.pdf ‎|Slides]]
 
  
== Lecture 13 Trace, explain and interpret ==
+
== 13.05.25 <span style="color:red"> Closed Book Test II </span> ==
[[Media:Lecture_13_Trace_Explain_Interpret_2020.pdf ‎|Slides]]
 
  
==Evaluation==
+
== 20.05.25 TBA ==
  
 +
Grading scale
 
*91 < score      -- grade 5 (excellent)
 
*91 < score      -- grade 5 (excellent)
 
*81 < score < 90 -- grade 4 (very good)
 
*81 < score < 90 -- grade 4 (very good)

Viimane redaktsioon: 31. jaanuar 2025, kell 12:58

Machine learning ITI8565

Spring term 2025

ITI8565: Machine learning

Taught by: Prof. Sven Nõmm

Teaching assistants Mr. Jaak Kapten and Mr. Mihhail Daniljuk

EAP: 6.0

Lectures on Tuesdays 12:15-13:45 U06a-209

Practices on Thursdays 14:00-15:30 ICT-402

Consultations is by appointment only! Please do not hesitate to ask for consultation!

Please refer to TalTech Moodle page of the course and MS Teams team of the course for up to date slides and files necessary for practice sessions. This page will be populated during the term with lecture with the lecture slides.


Lectures and tentative time line

04.02.25 Introduction and desistance function

Slides

11.02.25 Cluster Analysis I

Slides

18.02.25 Cluster analysis II

Slides

Slides

25.02.25 Classification I

Slides

04.03.25 Regression analysis

Deadline to submit first home assignment

Slides

Slides

11.03.25 Separability, Support Vector Machines, Kernel Trick

Slides

18.03.25 Model quality boosting

Slides

25.03.25 Closed Book Test I

01.04.25 Neural networks

08.04.25 Convolutional Neural Networks

15.04.25 Sequential data modelling

22.04.25 Deep Learning Transformers

29.04.25 Generative AI

06.05.25 Explainable AI

13.05.25 Closed Book Test II

20.05.25 TBA

Grading scale

  • 91 < score -- grade 5 (excellent)
  • 81 < score < 90 -- grade 4 (very good)
  • 71 < score < 80 -- grade 3 (good)
  • 61 < score < 70 -- grade 2 (satisfactory)
  • 51 < score < 60 -- grade 1 (acceptable)

score ≤ 50 -- a student has failed the course