Erinevus lehekülje "ITC8190 Mathematics for Computer Science" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
 
(ei näidata sama kasutaja 42 vahepealset redaktsiooni)
7. rida: 7. rida:
 
Assessment form: examination
 
Assessment form: examination
  
Instructor: Aleksandr Lenin, email: aleksandr dot lenin at ttu dot ee
+
Instructor: Aleksandr Lenin, email: aleksandr dot lenin at taltech dot ee
  
Consultations: slots agreed with instructor via email
+
Moodle course page: https://moodle.taltech.ee/course/view.php?id=31207
  
== Schedule ==
+
Course enrollment key: ITC8190_2020_FALL
  
Lecture: Tue 12:00 - 13:30 @SOC-218
+
Classes are conducted '''remotely''' by means of a virtual classroom in Moodle (link above).
  
Exercise: Wed 12:00 - 13:30 @ICT-637
+
Everyone attending the class, please make sure you register in Moodle course using the enrollment key provided above.
  
== Announcements ==
+
Virtual classes will commence in accordance with the timetable.
 
 
06.09.2018 Math test results are available [[Media:TestResults.pdf|here]].
 
 
 
11.09.2018 In connection with quite sudden change in the timetable, the IVCM13 group students are advised that the practice session will take place on Wednesday, September 11th 12:00 - 13:30 @ICT-637 (in accordance with the old timetable).
 
 
 
17.09.2018 The deadline for the first home assignment has been extended by 1 week. The submissions will be due September 25th.
 
 
 
02.10.2018 The test covering the fundamentals of this course will take place on October 16 during the practice session.
 
The topics covered by the test will include binary relations on sets, mappings/functions and their properties, equivalence relations and orders.
 
 
 
14.11.2018 The second [[Media:ITC8190_HW_NumberTheory_Counting.pdf|homework]] covering number theory and counting has been posted. Solutions due November 28th to email address ahto dot truu at ttu dot ee.
 
 
 
22.11.2018 Examination dates are as follows
 
 
 
* 19.12.2018 14:00 EIK-219 Available places: 16
 
* 07.01.2019 12:00 ICT-A1  Available places: 20
 
* 11.01.2019 12:00 ICT-A1  Available places: 20
 
 
 
Every student is eligible for two examination attempts, the student can register to up to two examination dates. Registration in ÕIS is compulsory. The students who have not registered will not be admitted.
 
Please make sure to keep your ID with you.
 
 
 
== Lectures ==
 
 
 
=== Week 1: Introduction to the course ===
 
* [[Media:ITC8190_Course_Introduction.pdf|Introduction to the course]]
 
 
 
=== Week 2: Sets and Set Operations ===
 
* [[Media:IDN8190_Sets_Lecture.pdf|Lecture]]
 
* [[Media:ITC8190_Sets_Definitions.pdf|Definitions]]
 
* [[Media:ICT8190_Sets_Exercises.pdf|Exercises]] and [[Media:ITC8190_Sets_Exercises_Solution.pdf|Solution]]
 
* [[Media:ITC8190_HW_Sets.pdf|Homework]] and [[Media:ITC8190_HW_Sets_Solution.pdf|Solution]]
 
=== Week 3: Binary Relations on Sets ===
 
* [[Media:ITC8190_BinaryRelations.pdf|Lecture]]
 
* [[Media:ITC8190_BinaryRelations_Definitions.pdf|Definitions]]
 
* [[Media:ITC8190_BinaryRelations_Exercises.pdf|Exercises]] and [[Media:ITC8190_BinaryRelations_Solution.pdf|Solution]]
 
 
 
=== Week 4: Mappings ===
 
* [[Media:ITC8190_Mappings_Lecture.pdf|Lecture]]
 
* [[Media:ITC8190_Mappings_Exercises.pdf|Exercises]] and [[Media:ITC8190_Mappings_Solution.pdf|Solution]]
 
* [[Media:ITC8190_Mappings_GroupWork.pdf|Group Work]]. Deadline October 23rd.
 
 
 
=== Week 5: Equivalence Relations on Sets ===
 
* [[Media:ITC8190_Lecture_Endorelations.pdf|Binary Endorelations (Lecture)]]
 
* [[Media:ITC8190_Lecture_EquivalenceRelations.pdf|Equivalence Relations (Lecture)]]
 
* [[Media:ITC8190_Equivalence_Exercises.pdf|Exercises]] and [[Media:ITC8190_Equivalence_Relations_Solution.pdf|Solution]]
 
 
 
=== Week 6: Order Relations on Sets ===
 
* [[Media:ITC8190_Lecture_OrderRelations.pdf|Order Relations (Lecture)]]
 
* [[Media:ITC8190_Order_Relations_Exercises.pdf|Exercises]] and [[Media:ITC8190_Order_Relations_Solution.pdf|Solution]]
 
 
 
=== Week 7: Recap & Test ===
 
* [[Media:ITC8190_Recap_Theory.pdf|Theory]]
 
* [[Media:ITC8190_Fundamentals_Recap2.pdf|Examples]]
 
 
 
=== Week 8: Elementary Number Theory ===
 
* [[Media:ITC8190-Lecture-Number-Theory.pdf|Lecture]]
 
* [[Media:ITC8190_NumberTheory_Exercises.pdf|Exercises]] and [[Media:ITC8190_NumberTheory_Solution.pdf|Solution]]
 
 
 
=== Week 9: Congruences ===
 
* [[Media:ITC8190-Lecture-Congruences.pdf|Lecture]]
 
* [[Media:ITC8190_Congruences_Exercises.pdf|Exercises]] and [[Media:ITC8190-Congruences-Solution.pdf|Solution]]
 
 
 
=== Week 10: Counting: Basic Methods ===
 
* [[Media:ITC8190-Lecture-Counting.pdf|Lecture]]
 
* [[Media:ITC8190_Counting_Exercises.pdf|Exercises]] and [[Media:ITC8190-Counting-Solution.pdf|Solution]]
 
 
 
=== Week 11: Counting: Solving Recurrences ===
 
* [[Media:ITC8190-Lecture-Recurrences.pdf|Lecture]]
 
* [[Media:ITC8190_Recurrences_Exercises.pdf|Exercises]] and [[Media:ITC8190-Recurrences-Solution.pdf|Solution]]
 
* [[Media:ITC8190_HW_NumberTheory_Counting.pdf|Homework]] and [[Media:ITC8190_HW_NumberTheory_Counting_Solution.pdf|Solution]]
 
 
 
=== Week 12: Mathematical Induction ===
 
* [[Media:ITC8190-Lecture-Induction.pdf|Lecture]]
 
* [[Media:ITC8190-Induction-Exercises.pdf|Exercises]] and [[Media:ITC8190-Induction-Solution.pdf|Solution]]
 
 
 
=== Week 13: Elementary Probability Theory ===
 
* [[Media:ITC8190-Lecture-Probability.pdf|Lecture]]
 
* [[Media:ITC8190-ProbabilityTheory-Exercises.pdf|Exercises]]
 
 
 
=== Week 14: Group Theory ===
 
* [[Media:ITC8190-Group-Theory-Lecture.pdf|Lecture]]
 
* [[Media:ITC8190_Groups_Exercises.pdf|Exercises]] and [[Media:ITC8240-Groups-Solution.pdf|Solution]]
 
 
 
=== Week 15: Group Isomorphisms ===
 
* [[Media:ITC8190-Group-Isomorphisms-Lecture.pdf|Lecture]]
 
* [[Media:ITC8190-Group-Isomorphisms-Exercises.pdf|Exercises]]
 
 
 
=== Week 16: Recap and Preparation for Exam ===
 
 
 
* [[Media:ITC8190_Lecture_Recap.pdf|Recap Materials]]
 
 
 
Topics to prepare for exam:
 
 
 
    1. Equivalence and order relations on sets, set partitions.
 
    2. Greatest common divisor, Euclidean algorithm,
 
      Bezout identity, extended Euclidean algorithm.
 
    3. Euler phi function, Euler theorem, Fermat little theorem.
 
    4. Congruences, solutions to ax = c (mod n). Congruence classes.
 
    5. Modular inverse. Invertibility of elements modulo n.
 
    6. Chinese Remainder Theorem.
 
    7. Mathematical induction.
 
    8. Probability Theory: event algebra, event independence,
 
      probability of events, event composition,
 
      the chain rule, Bayes' theorem, conditional and
 
      joint probabilities.
 
    9. Group Theory: group axioms, subgroups, group order,
 
      cyclic groups and group generators, order of element
 
      in a group, group structure, Cayley tables, Lagrange theorem.
 
 
 
=== Grades ===
 
 
 
{| class="wikitable"
 
! | Student Code || HW01 (max 10p) || Group Work || Test 1 || HW02 (max 10p) || Exam (max 10p)
 
|-
 
| 182497IVCM || 9.5 || 10 || 6 || 8.4 || 10
 
|-
 
| 182504IVCM || 9.5 || 10 || 5.5 || 7.9 || 9
 
|-
 
| 182505IVCM || 9.5 || 10 || 9.5 || 8.2 || 10
 
|-
 
| 182506IVCM || 10 || 10 || 9.5 || 9.3
 
|-
 
| 182510IVCM || 10 || 10 || 6.5 || 8.8 || 9
 
|-
 
| 182513IVCM || 9.5 || 10 || 7.5 || 8.7
 
|-
 
| 182514IVCM || 9 || 10 || 6 || 7.8 || 10
 
|-
 
| 182515IVCM || 9 || 10 || 4.5 || 7.9 || 8
 
|-
 
| 182516IVCM || 8.5 || 10 || 5.5 || 6.7 || 10
 
|-
 
| 182519IVCM || 9 || 10 || 4.5 || 7.7 || 9
 
|-
 
| 184505IVCM || 1 || 10 || 8 || 8.3 || 9
 
|-
 
| 184518IVCM || 0 || 10 || 0.5 || 6.4 || 0
 
|-
 
| 184561IVCM || 9.5 || 10 || 8 || 8.2 || 10
 
|-
 
| 184662IVCM || 8 || 10 || 1 || -- ||
 
|-
 
| 184664IVCM || 9 || 10 || 2.5 || 7.7 || 2
 
|-
 
| 184677IVCM || 10 || 10 || 6 || 7.8 || 9
 
|-
 
| 184683IVCM || 10 || 10 || 8.5 || 7.7 || 8
 
|-
 
| 184690IVCM || 9 || 10 || 8 || 6.4 || 10
 
|-
 
| 186358IVCM || 9.5 || 10 || 9 || 7.7 || 7
 
|}
 

Viimane redaktsioon: 5. september 2020, kell 16:02

Course information

Code: ITC8190 Mathematics for Computer Science

ECTS: 6

Assessment form: examination

Instructor: Aleksandr Lenin, email: aleksandr dot lenin at taltech dot ee

Moodle course page: https://moodle.taltech.ee/course/view.php?id=31207

Course enrollment key: ITC8190_2020_FALL

Classes are conducted remotely by means of a virtual classroom in Moodle (link above).

Everyone attending the class, please make sure you register in Moodle course using the enrollment key provided above.

Virtual classes will commence in accordance with the timetable.