Erinevus lehekülje "Machine learning ITI8565" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
 
(ei näidata sama kasutaja 14 vahepealset redaktsiooni)
15. rida: 15. rida:
 
Consultations is by appointment only!  Please do not hesitate to ask for consultation!  
 
Consultations is by appointment only!  Please do not hesitate to ask for consultation!  
  
<pre style="color: red">
 
Information for perspective students:
 
This page will be populated with the up to date lecture slides during the month of January.
 
You are welcome to join the course by means of ÕIS!
 
On January the 30th around afternoon ÕIS will generate welcome e-mail with the instructions to join Moodle page of the course.
 
 
</pre>
 
 
<pre style="color: red">
 
Slides below are from the year 2023. You are welcome to use this material as the reference but be aware that this year the course content will be revised and a few news topics will be added. 
 
</pre>
 
  
 
=Lectures =
 
=Lectures =
  
 
== Week 1  Introduction, Distance function ==
 
== Week 1  Introduction, Distance function ==
[[Media:Lecture_1_Intorduction_and_Distance_function_ML_2023.pdf ‎|Slides]]
+
[[Media:lecture_01_intorduction_and_distance_function_ml_2024_web_version.pdf ‎|Slides]]
  
 
== Week 2  Cluster analysis I ==
 
== Week 2  Cluster analysis I ==
[[Media:Lecture_02_Cluster_Analysis_1_ML_2023.pdf ‎|Slides]]
+
[[Media:lecture_02_cluster_analysis_1_ml_2024.pdf ‎|Slides]]
  
 
== Week 3  Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis) ==
 
== Week 3  Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis) ==
[[Media:Lecture_03_1_Cluster_Analysis_2_Probabilistic_approachML_2023.pdf ‎|Slides]]
+
[[Media:lecture_03_1_cluster_analysis_2_probabilistic_approach_ml_2024.pdf ‎|Slides]]
  
[[Media:Lecture_03_2_anomaly_and_otlier_analysis_ML2023.pdf ‎|Slides]]
+
[[Media:lecture_03_2_anomaly_and_otlier_analysis_ml_2024.pdf ‎|Slides]]
  
 
== Week 4  Supervised learning I: Classification ==
 
== Week 4  Supervised learning I: Classification ==
[[Media:Lecture_04_Classification_1_ML_2023.pdf ‎|Slides]]
+
[[Media:lecture_04_classification_1_ml_2024.pdf ‎|Slides]]
  
 
== Week 5  Supervised learning II: Regression  ==
 
== Week 5  Supervised learning II: Regression  ==
[[Media:Lecture_05_Supervised_Learning_2_ML_2023.pdf ‎|Slides]]
+
[[Media:lecture_05_supervised_learning_2_ml_2024.pdf ‎|Slides]]
 
 
<pre style="color: red">
 
05.03.2023 23:59 Deadline to submit home assignment I!!!
 
</pre>
 
[[Media:HA_01_ML_2023_web_version.pdf ‎|Home Assignment I]]
 
  
 
== Week 6  Supervised learning III: Gradient descent ==
 
== Week 6  Supervised learning III: Gradient descent ==
[[Media:Lecture_06_Gradient_descent_andmore_ML_2023.pdf ‎|Slides]]
+
[[Media:lecture_06_Gradient_descent_andmore_ml_2024.pdf ‎|Slides]]
 
 
== Week 7  Supervised learning IV: Support Vector Machine ==
 
[[Media:Lecture_07_Support_Vector_Machines_Kernel_Trick_ML_2023.pdf ‎|Slides]]
 
 
 
== Week 8  Supervised learning V: Model quality boosting ==
 
[[Media:Lecture_08_Model_Quality_Boosting_ML_2023.pdf ‎|Slides]]
 
 
 
== Week 9  Markov Models ==
 
[[Media:Lecture_09_Hidden_Markov_Models_ML2023.pdf ‎|Slides]]
 
  
<pre style="color: red">
+
[[Media:lecture_06_Support_Vector_Machines_Kernel_Trick_ML_2024.pdf ‎|Slides]]
30.03.2023 Test I!!!
 
</pre>
 
  
<pre style="color: red">
+
== Week 7  Supervised learning V: Model quality boosting ==
02.04.2023 23:59 Deadline to submit home assignment II!!!
+
[[Media:lecture_07_Model_Quality_Boosting_ML_2024.pdf ‎|Slides]]
</pre>
 
[[Media:Home_Assignment_02_ML_2023_web_version.pdf ‎|Home Assignment II]]
 
  
 +
== Week 8  Closed book test 1 ==
  
== Week 10 Neural Networks I ==
+
== Week 9 Neural Networks I ==
[[Media: Lecture_10_Neural_Networks_ML_2023.pdf ‎|Slides]]
+
[[Media: lecture_8_neural_networks_ML_2024.pdf ‎|Slides part I ]]
[[Media: Lecture_10_part_2_Neural_Networks_ML_2023.pdf ‎|Slides]]
+
[[Media: Lecture_8_part_2_neural_networks_ML_2024.pdf ‎|Slides part II]]
 +
[[Media: lecture_08_part_3_neural_networks_2_ML_2024.pdf ‎|Slides part III]]
  
 +
== Week 10  Sequential processes modelling: from Markov Models to LSTM ==
  
== Week 11  Neural Networks II ==
 
[[Media: Lecture_11_Neural_Networks_2_ML_2023.pdf ‎|Slides]]
 
  
== Week 12 Deep Learning I: Sequential Models==
+
== Week 11 Deep Learning I: Transformers==
TBP
+
TBA
  
== Week 13 Deep Learning II: Convolutional neural networks==
+
== Week 12 Deep Learning II: Convolutional neural networks==
TBU [[Media:Lecture_14_Deep_Learning_CNN_ML_2022.pdf ‎|Slides]]
+
TBA
  
== Week 14 Deep Learning II: Transformers==
+
== Week 13 Deep Learning III: Generative AI ==
TBU [[Media:Lecture_15_Transformers_ML_2022.pdf ‎|Slides]]
+
TBA
  
 +
== Week 14 Explainable AI==
 +
TBA
  
<pre style="color: red">
 
14.05.2023 23:59 Deadline to submit home assignment III!!!
 
</pre>
 
[[Media: HA_3_ML_2023_web_version.pdf ‎|Home Assignment III]]
 
  
== Week 16==
 
<pre style="color: red">
 
16.05.2023Test II!!!
 
</pre>
 
  
  

Viimane redaktsioon: 25. märts 2024, kell 11:32

Machine learning ITI8565

Spring term 2024

ITI8565: Machine learning

Taught by: Sven Nõmm

EAP: 6.0

Lectures on Tuesdays 12:00-17:00 ICT-A2

Practices on Thursdays 14:00-15:30 ICT-401

Consultations is by appointment only! Please do not hesitate to ask for consultation!


Lectures

Week 1 Introduction, Distance function

Slides

Week 2 Cluster analysis I

Slides

Week 3 Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis)

Slides

Slides

Week 4 Supervised learning I: Classification

Slides

Week 5 Supervised learning II: Regression

Slides

Week 6 Supervised learning III: Gradient descent

Slides

Slides

Week 7 Supervised learning V: Model quality boosting

Slides

Week 8 Closed book test 1

Week 9 Neural Networks I

Slides part I Slides part II Slides part III

Week 10 Sequential processes modelling: from Markov Models to LSTM

Week 11 Deep Learning I: Transformers

TBA

Week 12 Deep Learning II: Convolutional neural networks

TBA

Week 13 Deep Learning III: Generative AI

TBA

Week 14 Explainable AI

TBA



  • 91 < score -- grade 5 (excellent)
  • 81 < score < 90 -- grade 4 (very good)
  • 71 < score < 80 -- grade 3 (good)
  • 61 < score < 70 -- grade 2 (satisfactory)
  • 51 < score < 60 -- grade 1 (acceptable)

score ≤ 50 -- a student has failed the course