Erinevus lehekülje "Machine learning ITI8565" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
33. rida: 33. rida:
 
[[Media:Lecture_03_2_anomaly_and_otlier_analysis_ML2022.pdf ‎|Slides]]
 
[[Media:Lecture_03_2_anomaly_and_otlier_analysis_ML2022.pdf ‎|Slides]]
  
== Week 4  Supervised learning I ==
+
== Week 4  Supervised learning I: Feature selection kNN and regression ==
 
[[Media:Lecture_04_Classification_1_ML_2022.pdf ‎|Slides]]
 
[[Media:Lecture_04_Classification_1_ML_2022.pdf ‎|Slides]]
  
== Week 5  Supervised learning II ==
+
== Week 5  Supervised learning II: Regression and decision trees ==
 
[[Media:Lecture_05_Supervised_Learning_2_ML_2022.pdf ‎|Slides]]
 
[[Media:Lecture_05_Supervised_Learning_2_ML_2022.pdf ‎|Slides]]
 +
 +
== Week 6  Supervised learning III: Gradient descent ==
 +
[[Media:Lecture_6_Gradient_descent_andmore_ML_2022.pdf ‎|Slides]]
  
  

Redaktsioon: 28. veebruar 2022, kell 13:13

Machine learning ITI8565

Spring term 2022

ITI8565: Machine learning

Taught by: Sven Nõmm

EAP: 6.0

For the month of March the course will continue purely in online mode!!!

Lectures on Tuesdays 13:45-15:15 Online only in MS Teams environment

Practices on Thursdays 13:40-15:10 Online only in MS Teams environment

Please use code HAL900 to join TalTech Moodle page of the course.


Lectures

Week 1 Introduction, Distance function

Slides

Week 2 Cluster analysis I

Slides

Week 3 Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis)

Slides

Slides

Week 4 Supervised learning I: Feature selection kNN and regression

Slides

Week 5 Supervised learning II: Regression and decision trees

Slides

Week 6 Supervised learning III: Gradient descent

Slides


  • 91 < score -- grade 5 (excellent)
  • 81 < score < 90 -- grade 4 (very good)
  • 71 < score < 80 -- grade 3 (good)
  • 61 < score < 70 -- grade 2 (satisfactory)
  • 51 < score < 60 -- grade 1 (acceptable)

score ≤ 50 -- a student has failed the course