Erinevus lehekülje "Machine learning ITI8565 (2017)" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
1. rida: 1. rida:
 
Previous years: [https://courses.cs.ttu.ee/pages/Machine_learning 2016]
 
Previous years: [https://courses.cs.ttu.ee/pages/Machine_learning 2016]
  
Spring 2015/2015
+
Spring 2016/2017
  
 
ITI8565: Machine learning
 
ITI8565: Machine learning
9. rida: 9. rida:
 
EAP: 6.0
 
EAP: 6.0
  
Time and place: Thursdays
+
Time and place:  
   Lectures: 14:00-15:30  ICT-A1
+
   Lectures: Tuesdays 16:00-17:30  ICT-A1
   Labs: 16:00-17:30  ICT-402
+
   Labs: Thursdays  16:00-17:30  ICT-402
  
Preliminary Information:
+
Consultation: by appointment TBA
 
 
Examinations and consultations  ICT-405:
 
 
 
26.05 Consultation 14:00-15:30
 
 
 
02.06 Exam 1      14:00-15:30
 
 
 
10.06 Exam 2      16:00-17:30
 
 
 
14.06 Make-up Exam 14:00-15:30
 
 
 
 
 
 
 
  Consultation: by appointment TBA
 
  
 
   
 
   
 
Additional information: sven.nomm@ttu.ee
 
Additional information: sven.nomm@ttu.ee
 
The course is organised by [http://cs.ttu.ee the Department of Comptuer Science]. The course is supported by [http://studyitin.ee/ IT Academy].
 
  
 
==Evaluation==
 
==Evaluation==
41. rida: 25. rida:
 
*61 < score < 70 -- grade 2 (satisfactory)
 
*61 < score < 70 -- grade 2 (satisfactory)
 
*51 < score < 60 -- grade 1 (acceptable)
 
*51 < score < 60 -- grade 1 (acceptable)
score ≤ 50 -- a student has failed to pass
+
score ≤ 50 -- a student has failed the course
  
 
=Lectures =
 
=Lectures =
Lecture slides, necessary files, links and other necessary information would appear here before the lecture or practice.
+
Lecture slides, necessary files, links and other necessary information would be provided by means of Moodle (To be set up by 10.02.2017)
 
 
=Lecture 1: Introduction and Decision Trees =
 
[[Media:Intro_and_DTrees_ML2016_1.pdf ‎|Slides]]
 
==Practice 1==
 
[[Media:Practice_1_ML2016.zip ‎|Code and data examples]]
 
 
 
= Please Observe the practice room change starting 12.02.2016 ICT-402 !!!=
 
=Lecture 2: k- Nearest Neighbors  =
 
[[Media:Lecture2_ML2016_kNN.pdf |Slides]]
 
 
 
[http://ciml.info/dl/v0_8/ciml-v0_8-ch02.pdf Reading]
 
 
 
==Practice 2==
 
[[Media:Data_lecture2.zip ‎|Data]]
 
 
 
 
 
=Lecture 3: K- Means  =
 
[[Media:Lecture3_ML2016_K_means.pdf |Slides]]
 
 
 
=NB!  Moodle environment for the course has been activated=
 
If you need the code to enroll please contact the teacher by e-mail.
 
I will continue to upload lecture slides here. All other resources including home assignments will be available thorough the moodle only!!!
 
 
 
=Lecture 4: Linear Regression  =
 
[[Media:Lecture4_ML2016_Linear_Regression.pdf |Slides]]
 
 
 
= Home Assignment 1 =
 
Home Assignment 1 is available in Moodle! The deadline is 15.03.2016 23:55 !
 
 
 
=Lecture 5: Gaussian Mixture Model and EM algorithm  =
 
[[Media:Lecture5_ML2016_GMM_EM_Clusters.pdf |Slides]]
 
 
 
=Lecture 6: Neural Networks  =
 
[[Media:Lecture6_ML2016_Neural_Networks.pdf |Slides]]
 
 
 
=Lecture 7:  Logistic Regression =
 
[[Media:Lecture7_ML2016_Logistic_Regression.pdf |Slides]]
 
 
 
=Lecture 8:  Competitive learning =
 
[[Media:Lecture8_ML2016_Competitive_Learning.pdf |Slides]]
 
 
 
=Lecture 9:  Markov Models =
 
[[Media:Lecture9_ML2016_N_Markov_chains_and_hMm.pdf |Slides]]
 
 
 
=Lecture 10: Multiclass classification  =
 
[[Media:Lecture11_ML2015_N_Multiclass_classification.pdf |Slides]]
 
 
 
=Lecture 11: Support vector machines=
 
[[Media:Lecture11_ML2016_SVM.pdf |Slides]]
 
 
 
=Lecture 12: Random forests=
 
[[Media:Lecture12_ML2016_RandomForests.pdf |Slides]]
 

Redaktsioon: 30. jaanuar 2017, kell 09:23

Previous years: 2016

Spring 2016/2017

ITI8565: Machine learning

Taught by: Sven Nõmm

EAP: 6.0

Time and place:

 Lectures: Tuesdays 16:00-17:30  ICT-A1
 Labs:  Thursdays   16:00-17:30  ICT-402

Consultation: by appointment TBA


Additional information: sven.nomm@ttu.ee

Evaluation

  • 91 < score -- grade 5 (excellent)
  • 81 < score < 90 -- grade 4 (very good)
  • 71 < score < 80 -- grade 3 (good)
  • 61 < score < 70 -- grade 2 (satisfactory)
  • 51 < score < 60 -- grade 1 (acceptable)

score ≤ 50 -- a student has failed the course

Lectures

Lecture slides, necessary files, links and other necessary information would be provided by means of Moodle (To be set up by 10.02.2017)