Erinevus lehekülje "Data Mining (ITI8730)" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
54. rida: 54. rida:
  
 
=Lectures =
 
=Lectures =
== Week 1  05.09.23 Distance function ==
+
== 05.09.23 Distance function ==
 
[[Media:Lecture_01_DM2023_Introduction_distance_functions.pdf ‎|Slides]]
 
[[Media:Lecture_01_DM2023_Introduction_distance_functions.pdf ‎|Slides]]
  
 
+
== 12.09.23 Cluster analysis I ==
== Week 2  12.09.23 Cluster analysis I ==
 
 
[[Media:Lecture_02_DM2023_Cluster_analysis_I.pdf ‎|Slides]]
 
[[Media:Lecture_02_DM2023_Cluster_analysis_I.pdf ‎|Slides]]
  
== Week 3  13.09.22 Cluster analysis II ==
+
== 19.09.23 Cluster analysis II ==
 
[[Media:Lecture_02_DM2022_Cluster_analysis_II.pdf ‎|Slides]]
 
[[Media:Lecture_02_DM2022_Cluster_analysis_II.pdf ‎|Slides]]
  
== Week 4  20.09.22 Cluster analysis III ==
+
== 26.09.23 Anomaly and outlier analysis ==
 
[[Media:Lecture_04_DM_2022_Cluster_analysis_EM.pdf ‎|Slides]]
 
[[Media:Lecture_04_DM_2022_Cluster_analysis_EM.pdf ‎|Slides]]
  
 
+
== 03.10.23 Classification I ==
== Week 5  27.09.22 Outlier analysis ==
 
 
[[Media:Lecture_05_DM2022_Anomaly_and_Outlier_Analysis.pdf ‎|Slides]]
 
[[Media:Lecture_05_DM2022_Anomaly_and_Outlier_Analysis.pdf ‎|Slides]]
  
 
+
== 10.10.23 Classification II ==
== Week 6  4.10.22 Classification I ==
 
 
[[Media:Lecture_06_DM2022_Classification.pdf ‎|Slides]]
 
[[Media:Lecture_06_DM2022_Classification.pdf ‎|Slides]]
  
== Week 7  11.10.22 Classification II ==
+
== 17.10.23 Regression analysis ==
 
[[Media:Lecture_07_Classification_2_DM_2022.pdf ‎|Slides]]
 
[[Media:Lecture_07_Classification_2_DM_2022.pdf ‎|Slides]]
  
== Week 8  18.10.22 Regression ==
+
== 24.10.23 Association Pattern mining ==
 
[[Media:Lecture_08_Data_preparation_regression_DM_2022.pdf ‎|Slides]]
 
[[Media:Lecture_08_Data_preparation_regression_DM_2022.pdf ‎|Slides]]
  
 +
== 31.10.23 Closed Book Test I ==
  
== Week 9  25.10.22 Association Pattern mining ==
+
== 07.11.23 Distance and Similarity II  ==
[[Media:Lecture_09_DM2022_Association_Pattern_Mining.pdf ‎|Slides]]
 
 
 
== Week 9  27.10.22 Open book test I ==
 
 
 
== Week 10  01.11.22 Distance and Similarity II  ==
 
 
[[Media:Lecture_10_DM2022_Similarity_and_Distance_2.pdf ‎|Slides]]
 
[[Media:Lecture_10_DM2022_Similarity_and_Distance_2.pdf ‎|Slides]]
  
 
+
== 14.11.23 Mining the Time series ==
== Week 11  08.11.22 Mining the Time series ==
 
 
[[Media:Lecture_11_DM2022_Mining_TimeSeries.pdf ‎|Slides]]
 
[[Media:Lecture_11_DM2022_Mining_TimeSeries.pdf ‎|Slides]]
  
== Week 11  08.11.22 Mining data streams ==
+
== 21.11.23 Mining data streams ==
 
[[Media:Lecture_11_DM2022_Mining_Data_Streams.pdf ‎|Slides]]
 
[[Media:Lecture_11_DM2022_Mining_Data_Streams.pdf ‎|Slides]]
  
== Week 12  15.11.22 Text data mining ==
+
== 28.11.23 Text data mining ==
 
[[Media:Lecture_12_DM2022_TextDataMining.pdf ‎|Slides]]
 
[[Media:Lecture_12_DM2022_TextDataMining.pdf ‎|Slides]]
  
== Week 13  22.11.22 Graph data mining and Social analysis ==
+
== 06.12.23 Graph data mining and Social analysis ==
 
[[Media:Lecture_13_DM2022_Mining_Data_Graph_Data.pdf ‎|Slides]]
 
[[Media:Lecture_13_DM2022_Mining_Data_Graph_Data.pdf ‎|Slides]]
  
 
[[Media:Lecture_14_DM2022_Social_Network_analysis.pdf ‎|Slides]]
 
[[Media:Lecture_14_DM2022_Social_Network_analysis.pdf ‎|Slides]]
  
Home assignment 3 will be published on 24.11.2022
+
== 13.12.23 Privacy preserving data mining==
 
 
Make up test 1 26.12.22
 
 
 
== Week 14  29.11.22 Privacy preserving data mining==
 
 
[[Media:Lecture_15_DM2022_Privacy_preserving_data_mining.pdf ‎|Slides]]
 
[[Media:Lecture_15_DM2022_Privacy_preserving_data_mining.pdf ‎|Slides]]
  
== Week 15  06.12.22 and 08.12.22 Online practices devoted to text data mining and graph data mining ==
+
== 20.12.22 and 08.12.22 Online practices devoted to text data mining and graph data mining ==
 
Note that practice material is available only in TalTech  Moodle environment!!!
 
Note that practice material is available only in TalTech  Moodle environment!!!
 
== Week 16  13.12.22 Open book test 2 ==
 
Make-up test if necessary will be given on 15.12.2022
 

Redaktsioon: 29. august 2023, kell 09:59

Information for perspective students: Up-to-date information about the course will be added to this page by 31.08.2023. Below you can see slides from the previous year. Testing procedures will change! The course is open to students with valid TalTech UniID! The course targets M.Sc. curricula students. It is expected that the students are familiar with the Calculus, Linear algebra, Probability, Statistics and possess basic to intermediate knowledge of at least one programming language. This course is not recommended for students of B.Sc. curricula.


Fall 2023

ITI8730: Data Mining and network analysis

Old code for this course is IDN0110

Taught by: Sven Nõmm

EAP: 6.0

Lectures: Tuesdays 12:15 - 13:45 ICT-A1

Labs (practices): Thursdays 14:00 - 15:30 ICT-404

Link to join MS Teams

Consultation: by appointment only Please do not hesitate to ask for appointment!!! For communication please use the following e-mail: sven.nomm@taltech.ee

Prerequisites to join the course

Students are expected to be familiar with the foundations of Calculus, Linear algebra, Probability theory and Statistics and possess the knowledge of at least one programming language.

Overview

The course aims to provide knowledge of theory behind different methods of data mining and develop practical skills in applying those methods on practice. Is is spanned around four "super problems" of data mining:

  • Clustering
  • Classification
  • Association pattern mining
  • Outlier analysis

Main topics of the course:

  • Data types and Data Preparation
  • Similarity and Distances, Association Pattern Mining,
  • Cluster Analysis, Classification, Outlier analysis
  • Data streams, Text Data, Time Series, Discrete Sequences,
  • Spatial Data, Graph Data, Web Data, Social Network Analysis

Evaluation

  • 2x mandatory closed book tests. Each test gives 10% of the final grade. One make-up attempt for each test.
  • 3x mandatory home assignments (Computational assignment +short write up.) Each assignment gives 10% of the final grade. Late (after deadline) assignments are accepted with penalty of 10% for each day except Saturdays and Sundays.
  • final exam (gives 50 % of the final grade): Written report on assigned topic + discussion with lecturer.

Exam prerequisites: All 2 closed book tests are accepted (graded as 51 or higher), all 3 home assignments are accepted (graded as 51 or higher).

Home assignments, code examples, data files and useful links will be distributed by means of Moodle environment. Course enrollment process in Moodle TBA.

Lectures

05.09.23 Distance function

Slides

12.09.23 Cluster analysis I

Slides

19.09.23 Cluster analysis II

Slides

26.09.23 Anomaly and outlier analysis

Slides

03.10.23 Classification I

Slides

10.10.23 Classification II

Slides

17.10.23 Regression analysis

Slides

24.10.23 Association Pattern mining

Slides

31.10.23 Closed Book Test I

07.11.23 Distance and Similarity II

Slides

14.11.23 Mining the Time series

Slides

21.11.23 Mining data streams

Slides

28.11.23 Text data mining

Slides

06.12.23 Graph data mining and Social analysis

Slides

Slides

13.12.23 Privacy preserving data mining

Slides

20.12.22 and 08.12.22 Online practices devoted to text data mining and graph data mining

Note that practice material is available only in TalTech Moodle environment!!!