Erinevus lehekülje "Machine learning" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
45. rida: 45. rida:
 
== Lecture 4: Gaussian Mixture Model & EM algorithm  ==
 
== Lecture 4: Gaussian Mixture Model & EM algorithm  ==
 
[[Media:Lecture4_ML2015_GMM_and_EM.pdf ‎|Slides]]
 
[[Media:Lecture4_ML2015_GMM_and_EM.pdf ‎|Slides]]
 +
 +
[http://ciml.info/dl/v0_8/ciml-v0_8-ch14.pdf Reading ]
  
 
Home assignment Nr.1  
 
Home assignment Nr.1  
51. rida: 53. rida:
  
 
[[Media:HomeAssignmnet1.pdf | Home Assignmnet 1]]
 
[[Media:HomeAssignmnet1.pdf | Home Assignmnet 1]]
 +
 +
== Lecture 5: Linear Regression  ==
 +
[[Media:Lecture5_ML2015_Linear_Regression.pdf ‎|Slides]]
 +
 +
[[Media: apt_data.mat|Data file 1 for the practice]]
 +
[[Media: courier_data.mat|Data file 2 for the practice]]

Redaktsioon: 5. märts 2015, kell 10:50

Previous years: 2014

Spring 2014/2015

ITI8565: Machine learning

Taught by: Sven Nõmm

EAP: 6.0

Time and place: Thursdays

 Lectures: 14:00-15:30  ICT-A2
 Labs: 16:00-17:30  ICT-405
 Consultation: by appointment


Additional information: sven.nomm@ttu.ee

The course is organised by the Department of Comptuer Science. The course is supported by IT Academy.

Lecture 1: Introduction, decision trees

Slides

Example made in class - When to play tennis?

Reading - contains also the full algorithm for decision tree learning with divide-and-conquer strategy.


Lecture 2: k-nearest neighbors

Slides

Data file for the practice Reading

Lecture 3: K-means & Gaussians

Slides

NB! Home assignment Nr.1 will be given next week

Reading I

Reading II

Lecture 4: Gaussian Mixture Model & EM algorithm

Slides

Reading

Home assignment Nr.1 If you missed the class please contact the lecturer sven.nomm@gmail.com to receive your individual data and get assignment for the part 2.1.

Home Assignmnet 1

Lecture 5: Linear Regression

Slides

Data file 1 for the practice Data file 2 for the practice