Erinevus lehekülje "Machine learning ITI8565" redaktsioonide vahel

Allikas: Kursused
Mine navigeerimisribale Mine otsikasti
1. rida: 1. rida:
 
[[Machine learning ITI8565]]
 
[[Machine learning ITI8565]]
  
Spring term 2022
+
Spring term 2023
  
 
ITI8565: Machine learning
 
ITI8565: Machine learning
9. rida: 9. rida:
 
EAP: 6.0
 
EAP: 6.0
  
<pre style="color: red">
+
#<pre style="color: red">
The course will continue purely in online mode!!!
+
#The course will continue purely in online mode!!!
</pre>
+
#</pre>
 
 
Lectures on Tuesdays 13:45-15:15  Online only in MS Teams environment
 
  
Practices on Thursdays 13:40-15:10 Online only in MS Teams environment
+
Lectures on Tuesdays 15:30-17:00  ICT-A1
  
Please use code HAL900 to join TalTech Moodle page of the course.
+
Practices on Thursdays 16:30-17:00 ICT-401
  
  
23. rida: 21. rida:
  
 
== Week 1  Introduction, Distance function ==
 
== Week 1  Introduction, Distance function ==
[[Media:Lecture_1_Intorduction_and_Distance_function_ML_2022.pdf ‎|Slides]]
+
[[Media:Lecture_1_Intorduction_and_Distance_function_ML_2023.pdf ‎|Slides]]
  
 
== Week 2  Cluster analysis I ==
 
== Week 2  Cluster analysis I ==
[[Media:Lecture_02_Cluster_Analysis_1_ML_2022.pdf ‎|Slides]]
+
[[Media:Lecture_02_Cluster_Analysis_1_ML_2023.pdf ‎|Slides]]
  
 
== Week 3  Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis) ==
 
== Week 3  Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis) ==
[[Media:Lecture_03_1_Cluster_Analysis_2_Probabilistic_approachML_2022.pdf ‎|Slides]]
+
[[Media:Lecture_03_1_Cluster_Analysis_2_Probabilistic_approachML_2023.pdf ‎|Slides]]
 +
 
 +
[[Media:Lecture_03_2_anomaly_and_otlier_analysis_ML2023.pdf ‎|Slides]]
  
[[Media:Lecture_03_2_anomaly_and_otlier_analysis_ML2022.pdf ‎|Slides]]
+
== Week 4  Supervised learning I: Classification ==
 +
[[Media:Lecture_04_Classification_1_ML_2023.pdf ‎|Slides]]
  
== Week 4 Supervised learning I: Feature selection kNN and regression ==
+
== Week 5 Supervised learning II: Regression  ==
[[Media:Lecture_04_Classification_1_ML_2022.pdf ‎|Slides]]
+
[[Media:Lecture_05_Supervised_Learning_2_ML_2023.pdf ‎|Slides]]
  
== Week 5  Supervised learning II: Regression and decision trees ==
+
<pre style="color: red">
[[Media:Lecture_05_Supervised_Learning_2_ML_2022.pdf ‎|Slides]]
+
05.03.2023 23:59 Deadline to submit home assignment I!!!
 +
</pre>
 +
[[Media:HA_01_ML_2023_web_version.pdf ‎|Home Assignment I]]
  
 
== Week 6  Supervised learning III: Gradient descent ==
 
== Week 6  Supervised learning III: Gradient descent ==
[[Media:Lecture_6_Gradient_descent_andmore_ML_2022.pdf ‎|Slides]]
+
[[Media:Lecture_06_Gradient_descent_andmore_ML_2023.pdf ‎|Slides]]
  
 
== Week 7  Supervised learning IV: Support Vector Machine ==
 
== Week 7  Supervised learning IV: Support Vector Machine ==
[[Media:Lecture_07_Support_Vector_Machines_Kernel_Trick_ML_2022.pdf ‎|Slides]]
+
[[Media:Lecture_07_Support_Vector_Machines_Kernel_Trick_ML_2023.pdf ‎|Slides]]
 +
 
 +
== Week 8  Supervised learning V: Model quality boosting ==
 +
[[Media:Lecture_08_Model_Quality_Boosting_ML_2023.pdf ‎|Slides]]
 +
 
 +
== Week 9  Markov Models ==
 +
[[Media:Lecture_09_Hidden_Markov_Models_ML2023.pdf ‎|Slides]]
 +
 
 +
<pre style="color: red">
 +
Test I!!!
 +
</pre>
 +
 
 +
== Week 10  Neural Networks I ==
 +
[[Media: Lecture_10_Neural_Networks_ML_2023.pdf ‎|Slides]]
 +
[[Media: Lecture_10_part_2_Neural_Networks_ML_2023.pdf ‎|Slides]]
  
== Week 9  Supervised learning V: Model quality boosting ==
 
[[Media:Lecture_09_Model_Quality_Boosting_ML_2022.pdf ‎|Slides]]
 
  
== Week 10 Supervised learning VI: Model quality boosting ==
+
== Week 11 Neural Networks II ==
[[Media:Markov model (1) (1).pdf ‎|Slides]]
+
[[Media: Lecture_11_Neural_Networks_2_ML_2023.pdf ‎|Slides]]
  
== Week 11 Neural Networks I ==
+
== Week 12 Deep Learning I: Sequential Models==
[[Media: Lecture_11_Neural_Networks_ML_2022.pdf ‎|Slides]]
+
TBP
  
== Week 12  Neural Networks II ==
+
== Week 13 Deep Learning II: Convolutional neural networks==
[[Media:Lecture_12_Neural_Networks_ML_2022.pdf ‎|Slides]]
+
TBP
  
== Week 13  Neural Networks III ==
+
== Week 14 Deep Learning II: Transformers==
[[Media:Lecture_13_Neural_Network_Intuition_ML_2022.pdf ‎|Slides]]
+
TBP
  
 
== Week 14  Neural Networks IV ==
 
== Week 14  Neural Networks IV ==
64. rida: 79. rida:
 
[[Media:Lecture_15_Transformers_ML_2022.pdf ‎|Slides]]
 
[[Media:Lecture_15_Transformers_ML_2022.pdf ‎|Slides]]
  
== Week 15 Trace, Explain, Interpret ==
+
== Week 15 Foundations of eXplainable AI ==
[[Media:Lecture_14_Trace_Explain_Interpret_2022.pdf ‎|Slides]]
+
[[Media:Lecture_15_Trace_Explain_Interpret_2023.pdf ‎|Slides]]
  
 
*91 < score      -- grade 5 (excellent)
 
*91 < score      -- grade 5 (excellent)

Redaktsioon: 23. jaanuar 2023, kell 16:00

Machine learning ITI8565

Spring term 2023

ITI8565: Machine learning

Taught by: Sven Nõmm

EAP: 6.0

  1. The course will continue purely in online mode!!!

Lectures on Tuesdays 15:30-17:00 ICT-A1

Practices on Thursdays 16:30-17:00 ICT-401


Lectures

Week 1 Introduction, Distance function

Slides

Week 2 Cluster analysis I

Slides

Week 3 Cluster analysis II (Probabilistic approach; Outlier and Anomaly Analysis)

Slides

Slides

Week 4 Supervised learning I: Classification

Slides

Week 5 Supervised learning II: Regression

Slides

05.03.2023 23:59 Deadline to submit home assignment I!!!

Home Assignment I

Week 6 Supervised learning III: Gradient descent

Slides

Week 7 Supervised learning IV: Support Vector Machine

Slides

Week 8 Supervised learning V: Model quality boosting

Slides

Week 9 Markov Models

Slides

Test I!!!

Week 10 Neural Networks I

Slides Slides


Week 11 Neural Networks II

Slides

Week 12 Deep Learning I: Sequential Models

TBP

Week 13 Deep Learning II: Convolutional neural networks

TBP

Week 14 Deep Learning II: Transformers

TBP

Week 14 Neural Networks IV

Slides Slides

Week 15 Foundations of eXplainable AI

Slides

  • 91 < score -- grade 5 (excellent)
  • 81 < score < 90 -- grade 4 (very good)
  • 71 < score < 80 -- grade 3 (good)
  • 61 < score < 70 -- grade 2 (satisfactory)
  • 51 < score < 60 -- grade 1 (acceptable)

score ≤ 50 -- a student has failed the course